On automorphic Banach spaces

被引:0
|
作者
Yolanda Moreno
Anatolij Plichko
机构
[1] Universidad de Extremadura,Departamento de Matemáticas, Escuela Politécnica
[2] Politechnika Krakowska im. Tadeusza Kościuszki,Instytut Matematyki
来源
Israel Journal of Mathematics | 2009年 / 169卷
关键词
Banach Space; Dimensional Subspace; Israel Journal; Countable Subset; Density Character;
D O I
暂无
中图分类号
学科分类号
摘要
A Banach space X will be called extensible if every operator E → X from a subspace E ⊂ X can be extended to an operator X → X. Denote by dens X. The smallest cardinal of a subset of X whose linear span is dense in X, the space X will be called automorphic when for every subspace E ⊂ X every into isomorphism T: E → X for which dens X/E = dens X/TE can be extended to an automorphism X → X. Lindenstrauss and Rosenthal proved that c0 is automorphic and conjectured that c0 and ℓ2 are the only separable automorphic spaces. Moreover, they ask about the extensible or automorphic character of c0(Γ), for Γ uncountable. That c0(Γ) is extensible was proved by Johnson and Zippin, and we prove here that it is automorphic and that, moreover, every automorphic space is extensible while the converse fails. We then study the local structure of extensible spaces, showing in particular that an infinite dimensional extensible space cannot contain uniformly complemented copies of ℓnp, 1 ≤ p < ∞, p ≠ 2. We derive that infinite dimensional spaces such as Lp(μ), p ≠ 2, C(K) spaces not isomorphic to c0 for K metric compact, subspaces of c0 which are not isomorphic to c0, the Gurarij space, Tsirelson spaces or the Argyros-Deliyanni HI space cannot be automorphic.
引用
收藏
相关论文
共 50 条
  • [31] The Steiner Subratio in Banach Spaces
    Burusheva, L. Sh.
    MATHEMATICAL NOTES, 2019, 106 (1-2) : 183 - 190
  • [32] On Subprojectivity and Superprojectivity of Banach Spaces
    Galego, Eloi M.
    Gonzalez, Manuel
    Pello, Javier
    RESULTS IN MATHEMATICS, 2017, 71 (3-4) : 1191 - 1205
  • [33] Kergin interpolation in Banach spaces
    Filipsson, L
    JOURNAL OF APPROXIMATION THEORY, 2004, 127 (01) : 108 - 123
  • [34] A pythagorean approach in Banach spaces
    Ji Gao
    Journal of Inequalities and Applications, 2006
  • [35] Flat Chains in Banach Spaces
    Tarn Adams
    Journal of Geometric Analysis, 2008, 18 : 1 - 28
  • [36] Invertible Operators on Banach Spaces
    Nakasho, Kazuhisa
    FORMALIZED MATHEMATICS, 2019, 27 (02): : 107 - 115
  • [37] The uniform structure of Banach spaces
    N. J. Kalton
    Mathematische Annalen, 2012, 354 : 1247 - 1288
  • [38] Universal decomposed Banach spaces
    Taras Banakh
    Joanna Garbulińska-Wȩgrzyn
    Banach Journal of Mathematical Analysis, 2020, 14 : 470 - 486
  • [39] The nonlinear geometry of Banach spaces
    Kalton, Nigel J.
    REVISTA MATEMATICA COMPLUTENSE, 2008, 21 (01): : 7 - 60
  • [40] Lagrange approximation in Banach spaces
    Nilsson, Lisa
    Pinasco, Damian
    Zalduendo, Ignacio
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2015, 65 (01) : 281 - 288