On automorphic Banach spaces

被引:0
|
作者
Yolanda Moreno
Anatolij Plichko
机构
[1] Universidad de Extremadura,Departamento de Matemáticas, Escuela Politécnica
[2] Politechnika Krakowska im. Tadeusza Kościuszki,Instytut Matematyki
来源
Israel Journal of Mathematics | 2009年 / 169卷
关键词
Banach Space; Dimensional Subspace; Israel Journal; Countable Subset; Density Character;
D O I
暂无
中图分类号
学科分类号
摘要
A Banach space X will be called extensible if every operator E → X from a subspace E ⊂ X can be extended to an operator X → X. Denote by dens X. The smallest cardinal of a subset of X whose linear span is dense in X, the space X will be called automorphic when for every subspace E ⊂ X every into isomorphism T: E → X for which dens X/E = dens X/TE can be extended to an automorphism X → X. Lindenstrauss and Rosenthal proved that c0 is automorphic and conjectured that c0 and ℓ2 are the only separable automorphic spaces. Moreover, they ask about the extensible or automorphic character of c0(Γ), for Γ uncountable. That c0(Γ) is extensible was proved by Johnson and Zippin, and we prove here that it is automorphic and that, moreover, every automorphic space is extensible while the converse fails. We then study the local structure of extensible spaces, showing in particular that an infinite dimensional extensible space cannot contain uniformly complemented copies of ℓnp, 1 ≤ p < ∞, p ≠ 2. We derive that infinite dimensional spaces such as Lp(μ), p ≠ 2, C(K) spaces not isomorphic to c0 for K metric compact, subspaces of c0 which are not isomorphic to c0, the Gurarij space, Tsirelson spaces or the Argyros-Deliyanni HI space cannot be automorphic.
引用
收藏
相关论文
共 50 条
  • [21] Nonlinear expansions in Banach spaces
    Nasri, M.
    SAMPLING THEORY SIGNAL PROCESSING AND DATA ANALYSIS, 2024, 22 (01):
  • [22] BANACH SPACES FOR THE SCHWARTZ DISTRIBUTIONS
    Gill, Tepper L.
    REAL ANALYSIS EXCHANGE, 2018, 43 (01) : 1 - 36
  • [23] Flat Forms in Banach Spaces
    Marie A. Snipes
    Journal of Geometric Analysis, 2013, 23 : 490 - 538
  • [24] Holomorphic functions on Banach spaces
    Mujica, Jorge
    NOTE DI MATEMATICA, 2006, 25 (02): : 113 - 138
  • [25] The trace formula in Banach spaces
    W. B. Johnson
    A. Szankowski
    Israel Journal of Mathematics, 2014, 203 : 389 - 404
  • [26] Banach spaces with the PC property
    Rybakov, VI
    MATHEMATICAL NOTES, 2004, 76 (3-4) : 525 - 533
  • [27] Discrete chaos in Banach spaces
    Yuming Shi
    Guanrong Chen
    Science in China Series A: Mathematics, 2005, 48 : 222 - 238
  • [28] Greedy algorithms in Banach spaces
    V.N. Temlyakov
    Advances in Computational Mathematics, 2001, 14 : 277 - 292
  • [29] On asymptotic models in Banach spaces
    Halbeisen, L
    Odell, E
    ISRAEL JOURNAL OF MATHEMATICS, 2004, 139 (1) : 253 - 291
  • [30] Flat Forms in Banach Spaces
    Snipes, Marie A.
    JOURNAL OF GEOMETRIC ANALYSIS, 2013, 23 (02) : 490 - 538