On automorphic Banach spaces

被引:0
|
作者
Yolanda Moreno
Anatolij Plichko
机构
[1] Universidad de Extremadura,Departamento de Matemáticas, Escuela Politécnica
[2] Politechnika Krakowska im. Tadeusza Kościuszki,Instytut Matematyki
来源
Israel Journal of Mathematics | 2009年 / 169卷
关键词
Banach Space; Dimensional Subspace; Israel Journal; Countable Subset; Density Character;
D O I
暂无
中图分类号
学科分类号
摘要
A Banach space X will be called extensible if every operator E → X from a subspace E ⊂ X can be extended to an operator X → X. Denote by dens X. The smallest cardinal of a subset of X whose linear span is dense in X, the space X will be called automorphic when for every subspace E ⊂ X every into isomorphism T: E → X for which dens X/E = dens X/TE can be extended to an automorphism X → X. Lindenstrauss and Rosenthal proved that c0 is automorphic and conjectured that c0 and ℓ2 are the only separable automorphic spaces. Moreover, they ask about the extensible or automorphic character of c0(Γ), for Γ uncountable. That c0(Γ) is extensible was proved by Johnson and Zippin, and we prove here that it is automorphic and that, moreover, every automorphic space is extensible while the converse fails. We then study the local structure of extensible spaces, showing in particular that an infinite dimensional extensible space cannot contain uniformly complemented copies of ℓnp, 1 ≤ p < ∞, p ≠ 2. We derive that infinite dimensional spaces such as Lp(μ), p ≠ 2, C(K) spaces not isomorphic to c0 for K metric compact, subspaces of c0 which are not isomorphic to c0, the Gurarij space, Tsirelson spaces or the Argyros-Deliyanni HI space cannot be automorphic.
引用
收藏
相关论文
共 50 条
  • [1] Pseudo almost automorphic solutions to semilinear differential equations in Banach spaces
    Xiao, Ti-Jun
    Liang, Jin
    Zhang, Jun
    SEMIGROUP FORUM, 2008, 76 (03) : 518 - 524
  • [2] Pseudo almost automorphic solutions to semilinear differential equations in Banach spaces
    Ti-Jun Xiao
    Jin Liang
    Jun Zhang
    Semigroup Forum, 2008, 76 : 518 - 524
  • [3] Geometry of Banach spaces with property β
    A. S. Granero
    M. Jiménez Sevilla
    J. P. Moreno
    Israel Journal of Mathematics, 1999, 111 : 263 - 273
  • [4] Examples of uniformly homeomorphic Banach spaces
    N. J. Kalton
    Israel Journal of Mathematics, 2013, 194 : 151 - 182
  • [5] On the bounded approximation property in Banach spaces
    Jesús M. F. Castillo
    Yolanda Moreno
    Israel Journal of Mathematics, 2013, 198 : 243 - 259
  • [6] Integration in Hilbert generated Banach spaces
    Robert Deville
    José Rodríguez
    Israel Journal of Mathematics, 2010, 177 : 285 - 306
  • [7] Are Banach spaces monadic?
    Rosicky, J.
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (01) : 268 - 274
  • [8] Subprojective Banach spaces
    Oikhberg, T.
    Spinu, E.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 424 (01) : 613 - 635
  • [9] Mean ergodicity on Banach lattices and Banach spaces
    Eduard Yu. Emel’yanov
    Manfred P.H. Wolff
    Archiv der Mathematik, 1999, 72 : 214 - 218
  • [10] Bimeasures in Banach spaces
    Nicolae Dinculeanu
    Muthu Muthiah
    Annali di Matematica Pura ed Applicata, 2000, 178 (1) : 339 - 392