The p-Bondage Number of Trees

被引:0
|
作者
You Lu
Jun-Ming Xu
机构
[1] Northwestern Polytechnical University,Department of Applied Mathematics
[2] University of Science and Technology of China,Department of Mathematics
来源
Graphs and Combinatorics | 2011年 / 27卷
关键词
Domination; Bondage number; -Domination; -Bondage number; Trees; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
Let p be a positive integer and G = (V, E) be a simple graph. A p-dominating set of G is a subset \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${D\,{\subseteq}\, V}$$\end{document} such that every vertex not in D has at least p neighbors in D. The p-domination number of G is the minimum cardinality of a p-dominating set of G. The p-bondage number of a graph G with (ΔG) ≥ p is the minimum cardinality among all sets of edges \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${B\subseteq E}$$\end{document} for which γp(G − B) > γp(G). For any integer p ≥ 2 and tree T with (ΔT) ≥ p, this paper shows that 1 ≤  bp(T) ≤ (ΔT) − p + 1, and characterizes all trees achieving the equalities.
引用
收藏
页码:129 / 141
页数:12
相关论文
共 50 条
  • [41] A bound on the size of a graph with given order and bondage number
    Hartnell, BL
    Rall, DF
    DISCRETE MATHEMATICS, 1999, 197 (1-3) : 409 - 413
  • [42] The bondage number of C3 x Cn
    Sohn, Moo Young
    Xudong, Yuan
    Jeong, Hyeon Seok
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2007, 44 (06) : 1213 - 1231
  • [43] Bondage Number of Planar Graphs without Small Cycles
    Hou, Jianfeng
    Liu, Guizhen
    Wu, Jianliang
    UTILITAS MATHEMATICA, 2011, 84 : 189 - 199
  • [44] Bondage and Reinforcement Number of γf for Complete Multipartite Graph
    陈学刚
    孙良
    马德香
    Journal of Beijing Institute of Technology, 2003, (01) : 89 - 91
  • [45] Independent k-rainbow bondage number of graphs
    Kosari, S.
    Amjadi, J.
    Chellali, M.
    Najafi, F.
    Sheikholeslami, S. M.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2024, 21 (01) : 102 - 109
  • [46] On the 2-rainbow bondage number of planar graphs
    Amjadi, J.
    Parnian, A.
    ARS COMBINATORIA, 2016, 126 : 395 - 405
  • [47] An improved upper bound for the bondage number of graphs on surfaces
    Huang, Jia
    DISCRETE MATHEMATICS, 2012, 312 (18) : 2776 - 2781
  • [48] The bondage number of graphs on topological surfaces and Teschner's conjecture
    Gagarin, Andrei
    Zverovich, Vadim
    DISCRETE MATHEMATICS, 2013, 313 (06) : 796 - 808
  • [49] A NOTE ON THE p- DOMINATION NUMBER OF TREES
    Lu, You
    Hou, Xinmin
    Xu, Jun-Ming
    OPUSCULA MATHEMATICA, 2009, 29 (02) : 157 - 164
  • [50] Upper bounds on the bondage number of the strong product of a graph and a tree
    Zhao, Weisheng
    Zhang, Heping
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (03) : 511 - 527