The p-Bondage Number of Trees

被引:0
|
作者
You Lu
Jun-Ming Xu
机构
[1] Northwestern Polytechnical University,Department of Applied Mathematics
[2] University of Science and Technology of China,Department of Mathematics
来源
Graphs and Combinatorics | 2011年 / 27卷
关键词
Domination; Bondage number; -Domination; -Bondage number; Trees; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
Let p be a positive integer and G = (V, E) be a simple graph. A p-dominating set of G is a subset \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${D\,{\subseteq}\, V}$$\end{document} such that every vertex not in D has at least p neighbors in D. The p-domination number of G is the minimum cardinality of a p-dominating set of G. The p-bondage number of a graph G with (ΔG) ≥ p is the minimum cardinality among all sets of edges \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${B\subseteq E}$$\end{document} for which γp(G − B) > γp(G). For any integer p ≥ 2 and tree T with (ΔT) ≥ p, this paper shows that 1 ≤  bp(T) ≤ (ΔT) − p + 1, and characterizes all trees achieving the equalities.
引用
收藏
页码:129 / 141
页数:12
相关论文
共 50 条
  • [31] Restrained Italian bondage number in graphs
    Ebrahimi, N.
    Amjadi, J.
    Chellali, M.
    Sheikholeslami, S. M.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2023, 15 (05)
  • [32] On the Roman Bondage Number of Planar Graphs
    Rad, Nader Jafari
    Volkmann, Lutz
    GRAPHS AND COMBINATORICS, 2011, 27 (04) : 531 - 538
  • [33] On the Roman Bondage Number of Planar Graphs
    Nader Jafari Rad
    Lutz Volkmann
    Graphs and Combinatorics, 2011, 27 : 531 - 538
  • [34] On the bondage number of planar and directed graphs
    Carlson, Kelli
    Develin, Mike
    DISCRETE MATHEMATICS, 2006, 306 (8-9) : 820 - 826
  • [35] The Bondage Number of Graphs with Crossing Number Less than Four
    Cao, Yong-Chang
    Huang, Jia
    Xu, Jun-Ming
    ARS COMBINATORIA, 2013, 112 : 493 - 502
  • [36] Bondage number of strong product of two paths
    Zhao, Weisheng
    Zhang, Heping
    FRONTIERS OF MATHEMATICS IN CHINA, 2015, 10 (02) : 435 - 460
  • [37] Bondage number of strong product of two paths
    Weisheng Zhao
    Heping Zhang
    Frontiers of Mathematics in China, 2015, 10 : 435 - 460
  • [38] RETRACTED: An investigation of unicyclic graphs in which the isolate bondage number is equal to three in graph network theory (Retracted Article)
    Priyatharsini, B. K. Keerthiga
    Velammal, S.
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2021, 12 (06) : 5743 - 5749
  • [39] Quasi-total Roman bondage number in graphs
    Jiang, Huiqin
    Shao, Zehui
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2022, 19 (03) : 221 - 228
  • [40] Upper bounds for the bondage number of graphs on topological surfaces
    Gagarin, Andrei
    Zverovich, Vadim
    DISCRETE MATHEMATICS, 2013, 313 (11) : 1132 - 1137