The p-Bondage Number of Trees

被引:0
|
作者
You Lu
Jun-Ming Xu
机构
[1] Northwestern Polytechnical University,Department of Applied Mathematics
[2] University of Science and Technology of China,Department of Mathematics
来源
Graphs and Combinatorics | 2011年 / 27卷
关键词
Domination; Bondage number; -Domination; -Bondage number; Trees; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
Let p be a positive integer and G = (V, E) be a simple graph. A p-dominating set of G is a subset \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${D\,{\subseteq}\, V}$$\end{document} such that every vertex not in D has at least p neighbors in D. The p-domination number of G is the minimum cardinality of a p-dominating set of G. The p-bondage number of a graph G with (ΔG) ≥ p is the minimum cardinality among all sets of edges \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${B\subseteq E}$$\end{document} for which γp(G − B) > γp(G). For any integer p ≥ 2 and tree T with (ΔT) ≥ p, this paper shows that 1 ≤  bp(T) ≤ (ΔT) − p + 1, and characterizes all trees achieving the equalities.
引用
收藏
页码:129 / 141
页数:12
相关论文
共 50 条
  • [21] Bondage number of mesh networks
    Futao Hu
    Jun-Ming Xu
    Frontiers of Mathematics in China, 2012, 7 : 813 - 826
  • [22] The isolate bondage number of a graph
    R. Arul Ananthan
    S. Balamurugan
    Acta Mathematica Hungarica, 2025, 175 (2) : 395 - 410
  • [23] On the bondage number of middle graphs
    A. Aytaç
    T. Turaci
    Z. N. Odabaş
    Mathematical Notes, 2013, 93 : 795 - 801
  • [24] Bondage number in oriented graphs
    Shan, Erfang
    Kang, Liying
    ARS COMBINATORIA, 2007, 84 : 319 - 331
  • [25] Upper bounds on the bondage number of a graph
    Samodivkin, Vladimir
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2018, 6 (01) : 1 - 16
  • [26] A BOUND ON THE BONDAGE NUMBER OF TOROIDAL GRAPHS*
    Hou, Jianfeng
    Liu, Guizhen
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2012, 4 (03)
  • [27] Remarks on the bondage number of planar graphs
    Fischermann, M
    Rautenbach, D
    Volkmann, L
    DISCRETE MATHEMATICS, 2003, 260 (1-3) : 57 - 67
  • [28] Open packing bondage number of a graph
    Saravanakumar, S.
    Anitha, A.
    Hamid, I. Sahul
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2019, 11 (05)
  • [29] ON THE AVERAGE LOWER BONDAGE NUMBER OF A GRAPH
    Turaci, Tufan
    RAIRO-OPERATIONS RESEARCH, 2016, 50 (4-5) : 1003 - 1012
  • [30] ON THE DOUBLE BONDAGE NUMBER OF GRAPHS PRODUCTS
    Koushki, Zeinab
    Maimani, Hamidreza
    TRANSACTIONS ON COMBINATORICS, 2019, 8 (01) : 51 - 59