The p-Bondage Number of Trees

被引:0
|
作者
You Lu
Jun-Ming Xu
机构
[1] Northwestern Polytechnical University,Department of Applied Mathematics
[2] University of Science and Technology of China,Department of Mathematics
来源
Graphs and Combinatorics | 2011年 / 27卷
关键词
Domination; Bondage number; -Domination; -Bondage number; Trees; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
Let p be a positive integer and G = (V, E) be a simple graph. A p-dominating set of G is a subset \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${D\,{\subseteq}\, V}$$\end{document} such that every vertex not in D has at least p neighbors in D. The p-domination number of G is the minimum cardinality of a p-dominating set of G. The p-bondage number of a graph G with (ΔG) ≥ p is the minimum cardinality among all sets of edges \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${B\subseteq E}$$\end{document} for which γp(G − B) > γp(G). For any integer p ≥ 2 and tree T with (ΔT) ≥ p, this paper shows that 1 ≤  bp(T) ≤ (ΔT) − p + 1, and characterizes all trees achieving the equalities.
引用
收藏
页码:129 / 141
页数:12
相关论文
共 50 条
  • [11] ROMAN {2}-BONDAGE NUMBER OF A GRAPH
    Moradi, Ahmad
    Mojdeh, Doost Ali
    Sharifi, Omid
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2020, 40 (01) : 255 - 268
  • [12] Trees with maximum p-reinforcement number
    Lu, You
    Xu, Jun-Ming
    DISCRETE APPLIED MATHEMATICS, 2014, 175 : 43 - 54
  • [13] On the average lower bondage number of graphs under join and corona operations
    Turaci, Tufan
    Kocay, Gamze
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2022, 38 (03) : 654 - 665
  • [14] Independent bondage number of a graph
    Priddy, Bruce
    Wang, Haiying
    Wei, Bing
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2019, 37 (02) : 702 - 712
  • [15] The bondage number of random graphs
    Mitsche, Dieter
    Perez-Gimenez, Xavier
    Pralat, Pawel
    ELECTRONIC JOURNAL OF COMBINATORICS, 2016, 23 (02)
  • [16] Total Bondage Number of a Graph
    Sridharan, N.
    Elias, M.
    Subramanian, V.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2007, 4 (02) : 203 - 209
  • [17] Bondage number of planar graphs
    Kang, LY
    Yuan, JJ
    DISCRETE MATHEMATICS, 2000, 222 (1-3) : 191 - 198
  • [18] Independent bondage number of a graph
    Bruce Priddy
    Haiying Wang
    Bing Wei
    Journal of Combinatorial Optimization, 2019, 37 : 702 - 712
  • [19] A Note on the Bondage Number of a Graph
    李育强
    数学季刊, 1994, (04) : 1 - 4
  • [20] Efficient bondage number of a graph
    Kulli, VR
    Soner, ND
    NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 1996, 19 (9-10): : 197 - 202