Minimality of invariant submanifolds in metric contact pair geometry

被引:0
作者
Gianluca Bande
Amine Hadjar
机构
[1] Università degli Studi di Cagliari,Dipartimento di Matematica e Informatica
[2] Université de Haute Alsace,Laboratoire de Mathématiques, Informatique et Applications
来源
Annali di Matematica Pura ed Applicata (1923 -) | 2015年 / 194卷
关键词
Contact pair; Vaisman manifold; Invariant submanifold; Minimal submanifold; Primary 53C25; Secondary 53B20; 53D10; 53B35; 53C12;
D O I
暂无
中图分类号
学科分类号
摘要
We study invariant submanifolds of manifolds endowed with a normal or complex metric contact pair with decomposable structure tensor ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document}. For the normal case, we prove that a ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document}-invariant submanifold tangent to a Reeb vector field and orthogonal to the other one is minimal. For a ϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi $$\end{document}-invariant submanifold N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document} everywhere transverse to both the Reeb vector fields but not orthogonal to them, we prove that it is minimal if and only if the angle between the tangential component ξ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi $$\end{document} (with respect to N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document}) of a Reeb vector field and the Reeb vector field itself is constant along the integral curves of ξ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi $$\end{document}. For the complex case (when just one of the two natural almost complex structures is supposed to be integrable), we prove that a complex submanifold is minimal if and only if it is tangent to both the Reeb vector fields.
引用
收藏
页码:1107 / 1122
页数:15
相关论文
共 18 条
[1]  
Abe K(1979)On a class of Hermitian manifolds Invent. Math. 51 103-121
[2]  
Bande G(2013)Symmetry in the geometry of metric contact pairs Math. Nachr. 286 1701-1709
[3]  
Blair DE(2013)On the curvature of metric contact pairs Mediterr. J. Math. 10 989-1009
[4]  
Bande G(2005)Contact pairs Tohoku Math. J. 57 247-260
[5]  
Blair DE(2010)On normal contact pairs Int. J. Math. 21 737-754
[6]  
Hadjar A(1974)Geometry of complex manifolds similar to the Calabi–Eckmann manifolds J. Differ. Geom. 9 263-274
[7]  
Bande G(1986)The spectrum of the Laplacian on Riemannian Heisenberg manifolds Mich. Math. J. 33 253-271
[8]  
Hadjar A(1979)Locally conformal Kähler manifolds with parallel Lee form Rend. Mat. 12 263-284
[9]  
Bande G(1982)Generalized Hopf manifolds Geom. Dedicata 13 231-255
[10]  
Hadjar A(1963)On a structure defined by a tensor field Tensor 1 99-109