Nuclear shape evolution and shape coexistence in Zr and Mo isotopes

被引:0
作者
Pankaj Kumar
Virender Thakur
Smriti Thakur
Vikesh Kumar
Shashi K. Dhiman
机构
[1] Himachal Pradesh University,Department of Physics
来源
The European Physical Journal A | 2021年 / 57卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The phenomena of shape evolution and shape coexistence in even–even 88-114\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{88-114}$$\end{document}Zr and 90-116\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{90-116}$$\end{document}Mo isotopes are studied by employing covariant density functional theory (CDFT) with density-dependent point-coupling parameter set, DD-PCX, and with separable pairing interaction. The results for the rms deviation in binding energies, two-neutron separation energy, the differential variation of two-neutron separation energy, and rms charge radii, as a function of neutron number, are presented and compared with available experimental data. In addition to the oblate–prolate shape coexistence in 96-110\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{96-110}$$\end{document}Zr isotopes, the correlations between shape transition and discontinuity in the observables are also examined. A smooth trend of charge radii in Mo isotopes is found to be due to the manifestation of triaxiality softness. The observed oblate and prolate minima are related to the low single-particle energy level density around the Fermi level of neutron and proton, respectively. The rapid shape transition in Zr isotopes near N≈\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\approx $$\end{document} 60 is identified to be caused by the evolution of the shell structure associated with massive proton excitations to 1πg9/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi g_{9/2}$$\end{document} orbit. The present calculations also predict a deformed semi-bubble structure in the 100\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{100}$$\end{document}Zr isotope.
引用
收藏
相关论文
共 155 条
[1]  
Cejnar P(2010)undefined Rev. Mod. Phys. 82 3-128
[2]  
Jolie J(2006)undefined Phys. Rev. Lett. 96 042504-214
[3]  
Casten RF(1990)undefined Phys. Rev. C 41 2883-50
[4]  
Hager U(2002)undefined Phys. Rev. Lett. 89 082501-548
[5]  
Buchinger F(2001)undefined At. Data Nucl. Data Tables 78 1-1012
[6]  
Campbell P(2009)undefined Phys. Lett. B 674 23-192
[7]  
Raman S(1992)undefined Phys. Rep. 215 101-undefined
[8]  
Nestor CW(2011)undefined Rev. Mod. Phys. 83 1467-undefined
[9]  
Tikkanen P(2013)undefined Phys. Rev. Lett. 110 022504-undefined
[10]  
Charlwood FC(2018)undefined Phys. Rev. Lett. 121 192501-undefined