On formally real division algebras and quasifields of finite rank

被引:0
作者
Kalhoff F.B. [1 ,2 ]
机构
[1] Fachbereich Mathematik, Universität Dortmund
[2] Fakultät für Mathematik und Informatik, Universität Passau
关键词
Natural Number; Division Algebra; Finite Rank; Real Division; Real Division Algebra;
D O I
10.1007/BF01237497
中图分类号
学科分类号
摘要
For each natural number n with n ≥ 2 we construct proper, formally real division algebras and proper, formally real quasifields of dimension n over their kernel. © Birkhäuser Verlag, Basel, 1998.
引用
收藏
页码:74 / 82
页数:8
相关论文
共 14 条
[1]  
Albert A.A., On ordered algebras, Bull. Amer. Math. Soc., 46, pp. 521-522, (1940)
[2]  
Bruck R.H., A Survey of Binary Systems, Ergebnisse der Mathematik und Ihrer Grenzgebiete, 20, (1966)
[3]  
Groger D., Über Angeordnete Fastkörper, (1982)
[4]  
Joussen J., Eine Charakterisierung der anordnungsfähigen Translationsebenen mittels ihrer Projektivitätengruppen, Talk at the DMV - Congress in Graz, (1985)
[5]  
Kalhoff F., Uniform valuations on planar ternary rings, Geometriae Dedicata, 28, pp. 337-348, (1988)
[6]  
Geometriae Dedicata, 31, pp. 123-124, (1989)
[7]  
Kalhoff F., Formal power series over cartesian groups and their spaces of orderings, Geometriae Dedicata, 36, pp. 329-345, (1990)
[8]  
Kalhoff F., On the existence of special quasifields, Arch. Math., 58, pp. 92-97, (1992)
[9]  
Kalhoff F., Topological projective planes and uniform valuations, Geometriae Dedicata, 54, pp. 199-224, (1995)
[10]  
Kalhoff F., Orderings, algebras and projective planes, Expositiones Math., 13, pp. 3-38, (1995)