On the Erlang loss function

被引:0
作者
H. Alzer
M. K. Kwong
机构
[1] The Hong Kong Polytechnic University,Department of Applied Mathematics
来源
Acta Mathematica Hungarica | 2020年 / 162卷
关键词
Erlang loss function; functional inequality; mean value; convexity; Laplace transform; 26E60; 33B20; 39B62; 44A10; 60K25; 90B20;
D O I
暂无
中图分类号
学科分类号
摘要
We present various properties of the Erlang loss function B(x,a)=(a∫0∞e-at(1+t)xdt)-1(x≥0,a>0).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B(x,a)=\Bigl( a \int_0^\infty e^{-at} (1+t)^x \,dt \Bigr) ^{-1} \quad{(x\geq 0,\ a>0)}.$$\end{document} Among other results, we prove:The function x↦B(x,a)λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\mapsto B(x,a)^{\lambda}$$\end{document} is convex on [0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[0,\infty)$$\end{document} for every a>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a>0$$\end{document} if and only if λ≤0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda\leq 0$$\end{document} or λ≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \geq 1$$\end{document}.The function x↦(1-B(1/x,a))-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\mapsto ({1-B(1/x,a)})^{-1} $$\end{document} is strictly convex on (0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(0,\infty)$$\end{document}. This leads to the functional inequality 21-B(H(x,y),a)<11-B(x,a)+11-B(y,a)(x,y>0,x≠y),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{2}{1-B( H(x,y) ,a)}< \frac{1}{1-B(x,a)} +\frac{1}{1-B(y,a)}\quad{(x,y>0,\ x\neq y)}, $$\end{document} where H(x,y)=2xy/(x+y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H(x,y)=2xy/(x+y)$$\end{document} denotes the harmonic mean of x and y. Let a>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a>0$$\end{document}. The inequality B(x,a)+B(1/x,a)≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B(x,a) + B(1/x,a)\leq 1$$\end{document} holds for all x>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x>0$$\end{document} if and only if a≤1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a\leq 1$$\end{document}.
引用
收藏
页码:14 / 31
页数:17
相关论文
共 8 条
[1]  
Brenner JL(1985)Analytic inequalities with applications to special functions J. Math. Anal. Appl. 106 427-442
[2]  
Gautschi W(1974)A harmonic mean inequality for the gamma function SIAM J. Math. Anal. 5 278-281
[3]  
Jagerman DL(1974)Some properties of the Erlang loss function Bell System Tech. J. 53 525-551
[4]  
Jagers AA(1986)On the continued Erlang loss function Oper. Res. Letters 5 43-46
[5]  
van Doorn EA(2006)The evergreen Erlang loss function Opsearch 43 309-319
[6]  
Medhi J(1928)Sur les fonctions convexes et les fonctions sousharmoniques J. Math. Pure Appl. 7 29-60
[7]  
Montel P(1932)Sur une équation fonctionelle Publ. Math. Univ. Belgrade 1 149-156
[8]  
Petrović M(undefined)undefined undefined undefined undefined-undefined