Asymptotic m-phase soliton-type solutions of a singularly perturbed Korteweg–de Vries equation with variable coefficients

被引:0
作者
V. H. Samoilenko
Yu. I. Samoilenko
机构
来源
Ukrainian Mathematical Journal | 2012年 / 64卷
关键词
Function Versus; Soliton Solution; Asymptotic Representation; Vries Equation; Main Term;
D O I
暂无
中图分类号
学科分类号
摘要
We propose an algorithm for the construction of asymptotic m-phase soliton-type solutions of a singularly perturbed Korteweg–de Vries equation with variable coefficients and establish the accuracy with which the main term asymptotically satisfies the considered equation.
引用
收藏
页码:1109 / 1127
页数:18
相关论文
共 33 条
[1]  
Korteweg D. J.(1895)On the change in form of long waves advancing in a rectangular canal and a new type of long stationary waves Philos. Mag 39 422-433
[2]  
de Vries G.(1975)Improved Korteweg–de Vries equation for ion acoustic waves Phys. Fluids 15 2446-2447
[3]  
Tappert FD(1969)Korteweg–de Vries equation for nonlinear hydromagnetic waves in a warm collision free plasma Phys. Fluids 12 2090-2093
[4]  
Kever H(1973)Solitons and energy transport in nonlinear lattices Comput. Phys. Comm. 5 1-10
[5]  
Morikawa GK(1970)Weakly nonlinear waves in rotating fluids J. Fluid. Mech. 42 803-822
[6]  
Zabusky NJ(1969)The Korteweg–de Vries equation and generalizations. III. Derivation of the Korteweg–de Vries equation and Burger’s equation J. Math. Phys. 10 536-539
[7]  
Leibovich S(1965)Interaction of ‘solitons’ in a collisionless plasma and the recurrence of initial states Phys. Rev. Lett. 15 240-243
[8]  
Su CS(1967)Method for solving the Korteweg–de Vries equation Phys. Rev. Lett. 19 1095-1097
[9]  
Gardner CS(1968)Integrals of nonlinear equations of evolution and solitary waves Comm. Pure Appl. Math. 21 467-490
[10]  
Zabusky NJ(1971)The Korteweg–de Vries equation is a completely integrable Hamiltonian system Funkts. Anal. Prilozhen. 5 18-27