Universality Classes in Burgers Turbulence

被引:0
|
作者
Govind Menon
Robert L. Pego
机构
[1] Brown University,Division of Applied Mathematics
[2] Carnegie Mellon University,Center for Nonlinear Analysis, Department of Mathematical Sciences
来源
Communications in Mathematical Physics | 2007年 / 273卷
关键词
Burger Equation; Universality Class; Multifractal Spectrum; Compound Poisson Process; Laplace Spectrum;
D O I
暂无
中图分类号
学科分类号
摘要
We establish necessary and sufficient conditions for the shock statistics to approach self-similar form in Burgers turbulence with Lévy process initial data. The proof relies upon an elegant closure theorem of Bertoin and Carraro and Duchon that reduces the study of shock statistics to Smoluchowski’s coagulation equation with additive kernel, and upon our previous characterization of the domains of attraction of self-similar solutions for this equation.
引用
收藏
页码:177 / 202
页数:25
相关论文
共 50 条
  • [31] Time asymptotics for solutions of the Burgers equation with a periodic force
    Werner Kirsch
    Almut Kutzelnigg
    Mathematische Zeitschrift, 1999, 232 : 691 - 705
  • [32] Stochastic Burgers and KPZ Equations from Particle Systems
    Lorenzo Bertini
    Giambattista Giacomin
    Communications in Mathematical Physics, 1997, 183 : 571 - 607
  • [33] Time asymptotics for solutions of the Burgers equation with a periodic force
    Kirsch, W
    Kutzelnigg, A
    MATHEMATISCHE ZEITSCHRIFT, 1999, 232 (04) : 691 - 705
  • [34] Critical exponents and the universality class of a minesweeper percolation model
    Qing, Yuqi
    You, Wen-Long
    Liu, Maoxin
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2020, 31 (09):
  • [35] Finite size scaling and universality class in ultrathin films
    Amazonas, MS
    Neto, JC
    de Sousa, JR
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2004, 270 (1-2) : 119 - 123
  • [36] Universality in large-scale structure of complete genomes
    Li-Ching Hsieh
    Ta-Yuan Chen
    Chang-Heng Chang
    Wen-Lang Fan
    Hoong-Chien Lee
    Genome Biology, 5 (3)
  • [37] A Haar wavelet quasilinearization approach for numerical simulation of Burgers' equation
    Jiwari, Ram
    COMPUTER PHYSICS COMMUNICATIONS, 2012, 183 (11) : 2413 - 2423
  • [38] A comparison of algorithms for control constrained optimal control of the Burgers equation
    J.C. de los Reyes
    K. Kunisch
    CALCOLO, 2004, 41 : 203 - 225
  • [39] On the Burgers Equation with a Stochastic Stepping-Stone Noisy Term
    E. K. Kolkovska
    Journal of Mathematical Sciences, 2004, 121 (5) : 2645 - 2652
  • [40] Density and particle concentration of a passive impurity in the burgers velocity field
    Saichev A.I.
    Lapinova S.A.
    Radiophysics and Quantum Electronics, 1997, 40 (9) : 766 - 773