Universality Classes in Burgers Turbulence

被引:0
|
作者
Govind Menon
Robert L. Pego
机构
[1] Brown University,Division of Applied Mathematics
[2] Carnegie Mellon University,Center for Nonlinear Analysis, Department of Mathematical Sciences
来源
Communications in Mathematical Physics | 2007年 / 273卷
关键词
Burger Equation; Universality Class; Multifractal Spectrum; Compound Poisson Process; Laplace Spectrum;
D O I
暂无
中图分类号
学科分类号
摘要
We establish necessary and sufficient conditions for the shock statistics to approach self-similar form in Burgers turbulence with Lévy process initial data. The proof relies upon an elegant closure theorem of Bertoin and Carraro and Duchon that reduces the study of shock statistics to Smoluchowski’s coagulation equation with additive kernel, and upon our previous characterization of the domains of attraction of self-similar solutions for this equation.
引用
收藏
页码:177 / 202
页数:25
相关论文
共 50 条
  • [11] A Hamiltonian Regularization of the Burgers Equation
    H.S. Bhat
    R.C. Fetecau
    Journal of Nonlinear Science, 2006, 16 : 615 - 638
  • [12] The universality class of the electroweak theory
    Rummukainen, K
    Tsypin, M
    Kajantie, K
    Laine, M
    Shaposhnikov, M
    NUCLEAR PHYSICS B, 1998, 532 (1-2) : 283 - 314
  • [13] Approach to equilibrium for a forced Burgers equation
    Kirsch, Werner
    Simon, Barry
    JOURNAL OF EVOLUTION EQUATIONS, 2001, 1 (04) : 411 - 419
  • [14] Approach to equilibrium for a forced Burgers equation
    Werner Kirsch
    Barry Simon
    Journal of Evolution Equations, 2001, 1 : 411 - 419
  • [15] Dynamic programming for the stochastic burgers equation
    Giuseppe Da Prato
    Arnaud Debussche
    Annali di Matematica Pura ed Applicata, 2000, 178 (1) : 143 - 174
  • [16] Exact solutions of the forced Burgers equation
    Petrovskii, SV
    TECHNICAL PHYSICS, 1999, 44 (08) : 878 - 881
  • [17] Exact solutions of the forced Burgers equation
    S. V. Petrovskii
    Technical Physics, 1999, 44 : 878 - 881
  • [18] Scaling properties and universality in a ratchet system
    J.A. de Oliveira
    E. D. Leonel
    The European Physical Journal Special Topics, 2014, 223 : 2969 - 2978
  • [19] Group method solutions of the generalized forms of Burgers, Burgers–KdV and KdV equations with time-dependent variable coefficients
    Mina B. Abd-el-Malek
    Medhat M. Helal
    Acta Mechanica, 2011, 221 : 281 - 296
  • [20] Large Time Asymptotics for the BBM–Burgers Equation
    Nakao Hayashi
    Elena I. Kaikina
    Pavel I. Naumkin
    Annales Henri Poincaré, 2007, 8 : 485 - 511