Up-embeddability of graphs with new degree-sum

被引:0
作者
Sheng-xiang Lv
Meng-da Fu
Yan-pei Liu
机构
[1] Hunan University of Science and Technology,School of Mathematics
[2] BeiJing Jiaotong University,Department of Mathematics
来源
Acta Mathematicae Applicatae Sinica, English Series | 2017年 / 33卷
关键词
maximum genus; up-embeddability; degree-sum; 05C10;
D O I
暂无
中图分类号
学科分类号
摘要
Let G be a k(k ≤ 2)-edge connected simple graph with minimal degree ≥ 3 and girth g,r=⌊g−12⌋\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g,r = \left\lfloor {\frac{{g - 1}}{2}} \right\rfloor $$\end{document} . For any edge uv ∈ E(G), if dG(u)+dG(v)>2v(G)−2(k+1)(g−2r)(k+1)(2r−1)(g−2r)+2(g−2r−1),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${d_G}\left( u \right) + {d_G}\left( v \right) > \frac{{2v\left( G \right) - 2\left( {k + 1} \right)\left( {g - 2r} \right)}}{{\left( {k + 1} \right)\left( {{2^r} - 1} \right)\left( {g - 2r} \right)}} + 2\left( {g - 2r - 1} \right),$$\end{document} then G is up-embeddable. Furthermore, similar results for 3-edge connected simple graphs are also obtained.
引用
收藏
页码:169 / 174
页数:5
相关论文
共 16 条
[1]  
Chen Y.C.(2007)Up-embeddability of a graph by order and girth Grpahs and Combinatorics 23 521-527
[2]  
Liu Y.P.(2009)Up-embeddability via girth and the degree-sum of adjacnt vertices Science in China Ser A: Math. 3 597-604
[3]  
Dong G.H.(1998)An improement of a theorem on the maximum genus for graphs Math. Appl. 11 109-112
[4]  
Liu Y.P.(1998)The degree-sum of nonadjacent vertices and up-embeddability of graphs Chinese J. Contemp. Math. 19 651-656
[5]  
Huang Y.Q.(1978)A characterization of upper embeddable graphs Trans. Amer. Math. Soc. 241 401-406
[6]  
Liu Y.P.(2010)Up-embeddability of graphs with small order Applied Mathematics Letters 23 267-271
[7]  
Huang Y.Q.(1981)A new characterization of the maximum genus of a graph Czechhoslovk Math. J. 106 604-613
[8]  
Liu Y.P.(1971)On the maximum genus of a graph J. Combin. Theory (Series B) 11 258-267
[9]  
Jungerman M.(1979)How to determine the maximum genus of a graph J. Combin. Theory (Series B) 26 216-227
[10]  
Lv S.X.(undefined)undefined undefined undefined undefined-undefined