Hopfield Neural Networks for Parametric Identification of Dynamical Systems

被引:0
|
作者
Miguel Atencia
Gonzalo Joya
Francisco Sandoval
机构
[1] E.T.S.I. Informática,Departamento de Matemática Aplicada
[2] E.T.S.I. Telecomunicación Universidad de Málaga.,Departamento de Tecnología Electrónica.
来源
Neural Processing Letters | 2005年 / 21卷
关键词
system identification; Hopfield neural networks; parameter estimation; adaptive control; optimization;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, a novel method, based upon Hopfield neural networks, is proposed for parameter estimation, in the context of system identification. The equation of the neural estimator stems from the applicability of Hopfield networks to optimization problems, but the weights and the biases of the resulting network are time-varying, since the target function also varies with time. Hence the stability of the method cannot be taken for granted. In order to compare the novel technique and the classical gradient method, simulations have been carried out for a linearly parameterized system, and results show that the Hopfield network is more efficient than the gradient estimator, obtaining lower error and less oscillations. Thus the neural method is validated as an on-line estimator of the time-varying parameters appearing in the model of a nonlinear physical system.
引用
收藏
页码:143 / 152
页数:9
相关论文
共 50 条
  • [1] Hopfield neural networks for parametric identification of dynamical systems
    Atencia, M
    Joya, G
    Sandoval, F
    NEURAL PROCESSING LETTERS, 2005, 21 (02) : 143 - 152
  • [2] Identification of noisy dynamical systems with parameter estimation based on Hopfield neural networks
    Atencia, Miguel
    Joya, Gonzalo
    Sandoval, Francisco
    NEUROCOMPUTING, 2013, 121 : 14 - 24
  • [3] Parameter identification of linear systems using Hopfield neural networks
    Song, Yimin
    Zhang, Ce
    Ma, Wengui
    Kongzhi Lilun Yu Yinyong/Control Theory and Applications, 2000, 17 (01): : 121 - 124
  • [4] Parametric identification of robotic systems with stable time-varying Hopfield networks
    Atencia, M
    Joya, G
    Sandoval, F
    NEURAL COMPUTING & APPLICATIONS, 2004, 13 (04): : 270 - 280
  • [5] Parametric identification of robotic systems with stable time-varying Hopfield networks
    Miguel Atencia
    Gonzalo Joya
    Francisco Sandoval
    Neural Computing & Applications, 2004, 13 : 270 - 280
  • [6] Robustness of the "Hopfield Estimator" for Identification of Dynamical Systems
    Atencia, Miguel
    Joya, Gonzalo
    Sandoval, Francisco
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2011, PT II, 2011, 6692 : 516 - 523
  • [7] On the ''identification and control of dynamical systems using neural networks''
    RiosPatron, E
    Braatz, RD
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 1997, 8 (02): : 452 - 452
  • [8] Identification of nonlinear dynamical systems using multilayered neural networks
    Jagannathan, S
    Lewis, FL
    AUTOMATICA, 1996, 32 (12) : 1707 - 1712
  • [9] IDENTIFICATION OF CHAOTIC DYNAMICAL-SYSTEMS WITH BACKPROPAGATION NEURAL NETWORKS
    ADACHI, M
    KOTANI, M
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 1994, E77A (01) : 324 - 334
  • [10] Identification of nonlinear dynamical systems using recurrent neural networks
    Behera, L
    Kumar, S
    Das, SC
    IEEE TENCON 2003: CONFERENCE ON CONVERGENT TECHNOLOGIES FOR THE ASIA-PACIFIC REGION, VOLS 1-4, 2003, : 1120 - 1124