Vibration-based damage indicators: a comparison based on information entropy

被引:0
|
作者
Maria Pina Limongelli
Pier Francesco Giordano
机构
[1] Politecnico di Milano,Department ABC
来源
Journal of Civil Structural Health Monitoring | 2020年 / 10卷
关键词
Damage indicators; Entropy; Localization; Interpolation method;
D O I
暂无
中图分类号
学科分类号
摘要
Vibration-based methods for damage localizations often rely on a damage feature defined in terms of changes of modal shapes and localize damage by detecting shape irregularities that are ascribed to local loss of stiffness. In this paper, the performance of several algorithms for damage localization is investigated and the results are compared in terms of the gain of information they provide, which is measured by the relative information entropy also known as Kullback–Leibner (KL) divergence. This parameter is a measure of the difference between two probability distributions and can quantify the information gain achieved using different statistical models. In this paper the relative entropy is used to compare the gain of information obtained using different damage-sensitive indicators retrieved from simulated structural health monitoring data. The investigation is carried out using structural responses simulated using the finite element model of a real bridge permanently monitored by the Italian Seismic Observatory of Structures.
引用
收藏
页码:251 / 266
页数:15
相关论文
共 50 条
  • [11] Vibration-based damage detection in rotating machinery
    Farrar, CR
    Duffey, TA
    DAMAS 99: DAMAGE ASSESSMENT OF STRUCTURES, 1999, 167-1 : 224 - 235
  • [12] Vibration-based seismic damage identification in buildings
    Zapico, JL
    González, MP
    DAMAGE ASSESSMENT OF STRUCTURES VI, 2005, 293-294 : 727 - 734
  • [13] A Comparison of Artificial Neural Network Learning Algorithms for Vibration-Based Damage Detection
    Dee, Goh Lyn
    Bakhary, Norhisham
    Rahman, Azlan Abdul
    Ahmad, Baderul Hisham
    ADVANCES IN STRUCTURES, PTS 1-5, 2011, 163-167 : 2756 - 2760
  • [14] Improved iterative regularization for vibration-based damage detection
    Weber, B
    Paultre, P
    Proulx, J
    Nondestructive Evaluation and Health Monitoring of Aerospace Materials, Composites, and Civil Infrastructure IV, 2005, 5767 : 132 - 142
  • [15] Unsupervised learning methods for vibration-based damage detection
    Fugate, ML
    Sohn, H
    Farrar, CR
    IMAC-XVIII: A CONFERENCE ON STRUCTURAL DYNAMICS, VOLS 1 AND 2, PROCEEDINGS, 2000, 4062 : 652 - 659
  • [16] Review of vibration-based structural damage identification methods
    Yang, Qiu-Wei
    Zhendong yu Chongji/Journal of Vibration and Shock, 2007, 26 (10): : 86 - 91
  • [17] Vibration-Based Nondestructive Damage Detection for Concrete Plates
    Pourrastegar, Azita
    Marzouk, H.
    ACI STRUCTURAL JOURNAL, 2021, 118 (06) : 117 - 129
  • [18] Vibration-based damage detection with structural modal characteristics
    Wang Yonggang
    Pei Yulong
    Zhao Yangdong
    BALTIC JOURNAL OF ROAD AND BRIDGE ENGINEERING, 2008, 3 (01): : 21 - 28
  • [19] Vibration-based damage detection in fiber reinforced plastics
    Kessler, Andreas
    Bledzki, Andrzej K.
    Materialpruefung/Materials Testing, 1998, 40 (11-12): : 472 - 474
  • [20] The use of strain gauges in vibration-based damage detection
    Marques dos Santos, Fabio Luis
    Peeters, Bart
    Lau, Jenny
    Desmet, Wim
    Sandoval Goes, Luiz Carlos
    11TH INTERNATIONAL CONFERENCE ON DAMAGE ASSESSMENT OF STRUCTURES (DAMAS 2015), 2015, 628