Acute toxicity of carbon-based nanomaterials to Escherichia coli is partially dependent on the presence of process impurities

被引:3
作者
Deryabin D.G. [1 ]
Aleshina E.S. [1 ]
Tlyagulova A.S. [1 ]
机构
[1] Orenburg State University, Orenburg 460018
来源
Nanotechnologies in Russia | 2011年 / 6卷 / 7-8期
关键词
Fullerene; Impurity Element; Impurity Composition; Process Impurity; Toxicological Parameter;
D O I
10.1134/S1995078011040057
中图分类号
学科分类号
摘要
Using inductively coupled plasma mass spectrometry and inductively coupled plasma atomic emission spectroscopy, we perform a compositional analysis of ten commercially available and laboratory carbon nanomaterials (CNMs). It is found that, depending on the type of CNMs and applied purification technology, they can contain 20 to 50 out of the 62 identified chemical elements, totally amounting to 0.03 to 23.1% of the weight of the sample under analysis. It is shown that the acute toxicity of CNMs, which is determined according to the effect on the luminescence intensity of a sensor Escherichia coli strain carrying cloned luxCDABE genes of Photobacterium leiognathi, is partially dependent on the presence of process impurities of Ni, Y, Zn, Sm, Gd, Ho, and Fe. With an increase in the time of contact between the sensor microorganism and the CNM, the latter develop intrinsic biotoxicity, which decreases the significance of the impurity composition in determining this activity within the dynamics of the experiment. © 2011 Pleiades Publishing, Ltd.
引用
收藏
页码:528 / 534
页数:6
相关论文
共 19 条
[1]  
Gottschalk F., Sonderer T., Scholz R.W., Nowack B., Modeled Environmental Concentrations of Engineered Nanomaterials (TiO <sub>2</sub>, ZnO, Ag, CNT, Fullerenes) for Different Regions, Environ. Sci. Technol. (Dordrecht), 43, 24, pp. 9216-9222, (2009)
[2]  
Hurt R.H., Monthioux M., Kane A., Toxicology of Carbon Nanomaterials: Status, Trends, and Perspectives on the Special Issue, Carbon, 44, 6, pp. 1028-1033, (2006)
[3]  
Blaise C., Gagne F., Ferard J.F., Eullaffroy P., Ecotoxicity of Selected Nano-Materials to Aquatic Organisms, Environ. Toxicol., 23, 5, pp. 591-598, (2008)
[4]  
Velzeboer I., Hendriks A.J., Ragas A.M., van de Meent D., Aquatic Ecotoxicity Tests of Some Nanomaterials, Environ. Toxicol. Chem., 27, 9, pp. 1942-1947, (2008)
[5]  
Mortimer M., Kasemets K., Heinlaan M., Kurvet I., Kahru A., High Throughput Kinetic Vibrio fischeri Bioluminescence Inhibition Assay for Study of Toxic Effects of Nanoparticles, Toxicol. In Vitro, 22, 5, pp. 1412-1417, (2008)
[6]  
Zheng H., Liu L., Lu Y., Long Y., Wang L., Ho K.P., Wong K.Y., Rapid Determination of Nanotoxicity Using Luminous Bacteria, Anal. Sci., 26, 1, pp. 125-128, (2010)
[7]  
Zarubina A.P., Lukashev E.P., Deev L.I., Parkhomenko I.M., Rubin A.B., Biotesting the Biological Effects of Single-Wall Carbon Nanotubes Using Bioluminescent Bacteria Test-System, Nanotechnol. Russ., 4, 11-12, pp. 871-875, (2009)
[8]  
Microbiological and Molecular-Genetic Evaluation of the Effect of Nanomaterials on Representatives of Microbiocenosis, (2010)
[9]  
Hull M.S., Kennedy A.J., Steevens J.A., Bednar A.J., Weiss C.A., Vikesland P.J., Release of Metal Impurities from Carbon Nanomaterials Influences Aquatic Toxicity, Environ. Sci. Technol. (Dordrecht), 43, 11, pp. 4169-4174, (2009)
[10]  
Kagan V.E., Tyurina Y.Y., Tyurin V.A., Konduru N.V., Potapovich A.I., Osipov A.N., Kisin E.R., Schwegler-Berry D., Mercer R., Castranova V., Shvedova A.A., Direct and Indirect Effects of Single Walled Carbon Nanotubes on RAW 264.7 Macrophages: Role of Iron, Toxicol. Lett, 165, 1, pp. 88-100