Mellish theorem for generalized constant width curves

被引:0
作者
Witold Mozgawa
机构
[1] Uniwersytet Marii Curie-Skłodowskiej,Instytut Matematyki
来源
Aequationes mathematicae | 2015年 / 89卷
关键词
53A04; Support function; isoptic; constant width; constant ; -width; Barbier theorem; Mellish theorem; curvature;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we give a generalization of the theorem characterizing ovals of constant width proved by Mellish (Ann Math (2) 32:181–190, 1931).
引用
收藏
页码:1095 / 1105
页数:10
相关论文
共 38 条
  • [1] Ait-Haddou R.(2008)Pythagorean-hodograph ovals of constant width Comput. Aided Geom. Des. 25 258-273
  • [2] Herzog W.(1998)Representation of curves of constant width in the hyperbolic plane Port. Math. 55 355-372
  • [3] Biard L.(1990)On isoptic curves An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Ser. Nouă. Mat. 36 47-54
  • [4] Araújo P.V.(1991)Isoptics of a closed strictly convex curve. Global differential geometry and global analysis Proc. Conf. Berlin/Germany 1990 Lect. Notes Math. 1481 28-35
  • [5] Benko K.(1987)On rosettes and almost rosettes Geom. Dedicata 24 221-228
  • [6] Cieślak W.(2010)Isoptic curves in the hyperbolic plane Stud. Univ. Žilina Math. Ser. 24 15-22
  • [7] Góźdź S.(1950)Sets subtending a constant angle on a circle Duke Math. J. 17 263-267
  • [8] Mozgawa W.(1917)On orthoptic and isoptic loci Am. J. 39 86-94
  • [9] Cieślak W.(1988)Conjectured isotropic characterization of a circle Am. Math. Mon. 95 845-84
  • [10] Miernowski A.(2013)Isoptics of Bézier curves Comput. Aided Geom. Des. 30 78-253