Uniqueness of unconditional bases in quasi-banach spaces with applications to hardy spaces, II

被引:0
作者
P. Wojtaszczyk
机构
[1] Instytut Matematyki Uniwersytetu Warszawskiego,
来源
Israel Journal of Mathematics | 1997年 / 97卷
关键词
Bipartite Graph; Hardy Space; Unconditional Basis; Unit Vector Basis; Haar System;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that a wide class of quasi-Banach spaces has a unique up to a permutation unconditional basis. This applies in particular to Hardy spacesHp forp<1. We also investigate the structure of complemented subspaces ofHp(D). The proofs use in essential way matching theory.
引用
收藏
页码:253 / 280
页数:27
相关论文
共 10 条
[1]  
Banach S.(1924)Un théorème sur les transformations biunivoques Fundamenta Mathematicae 6 236-239
[2]  
Kalton N. J.(1977)Orlicz sequence spaces without local convexity Mathematical Proceedings of the Cambridge Philosophical Society 81 253-277
[3]  
Kalton N. J.(1984)Convexity conditions on non-locally convex lattices Glasgow Mathematical Journal 25 141-152
[4]  
Kalton N. J.(1990)Uniqueness of unconditional bases in quasi-Banach spaces with application to Hardy spaces Israel Journal of Mathematics 72 299-311
[5]  
Leranoz C.(1970)Frechet spaces with a unique unconditional basis Studia Mathematica 38 23-34
[6]  
Wojtaszczyk P.(1985)The Mackey topology and complemented subspaces of Lorentz sequence spaces d(w, p) for 0<p<1 Transactions of the American Mathematical Society 287 713-722
[7]  
Mitiagin B. S.(1984)H Studia Mathematica 77 289-320
[8]  
Nawrocki M.(undefined)-spaces, p≤1, and spline systems undefined undefined undefined-undefined
[9]  
Ortyński A.(undefined)undefined undefined undefined undefined-undefined
[10]  
Wojtaszczyk P.(undefined)undefined undefined undefined undefined-undefined