Improved Prediction of Body Mass Index in Real-World Administrative Healthcare Claims Databases

被引:0
作者
Ganhui Lan
Bingcao Wu
Kaustubh Sharma
Kaushal Gadhia
Veronica Ashton
机构
[1] Janssen Scientific Affairs,
[2] LLC,undefined
[3] Mu Sigma Business Solutions,undefined
[4] LLC,undefined
来源
Advances in Therapy | 2022年 / 39卷
关键词
Administrative healthcare claims databases; BMI classifications; Body mass index; Machine learning; Predictive models; Real-world evidence;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:3835 / 3844
页数:9
相关论文
共 31 条
[1]  
Adair T(2020)The role of overweight and obesity in adverse cardiovascular disease mortality trends: an analysis of multiple cause of death data from Australia and the USA BMC Med 18 199-1343
[2]  
Lopez AD(2018)Association of obesity with healthcare resource utilization and costs in a commercial population Curr Med Res Opin 34 1335-879
[3]  
Kamble PS(2016)Body mass index trajectories and healthcare utilization in young and middle-aged adults Medicine (Baltimore) 95 869-1100
[4]  
Hayden J(2017)Body mass index and healthcare costs: a systematic literature review of individual participant data studies Obes Rev 18 1092-693
[5]  
Collins J(2018)Validation of body mass index (BMI)-related ICD-9-CM and ICD-10-CM administrative diagnosis codes recorded in US claims data Pharmacoepidemiol Drug Saf 27 677-8
[6]  
Elrashidi MY(2020)Validated methods for identifying individuals with obesity in health care administrative databases: a systematic review Obes Sci Pract 6 1-1327
[7]  
Jacobson DJ(2020)Prevalence of obesity and severe obesity among adults: United States, 2017–2018 NCHS Data Brief 360 1314-undefined
[8]  
St Sauver J(2021)Body mass index variable interpolation to expand the utility of real-world administrative healthcare claims database analyses Adv Ther 38 undefined-undefined
[9]  
Kent S(undefined)undefined undefined undefined undefined-undefined
[10]  
Fusco F(undefined)undefined undefined undefined undefined-undefined