Highly crystalline antimony oxide octahedron: an efficient anode for sodium-ion batteries

被引:0
|
作者
Ramchandra S. Kalubarme
Chan-Jin Park
Bharat B. Kale
Suresh W. Gosavi
机构
[1] Centre for Materials for Electronic Technology,Department of Physics, Centre for Advanced Studies in Material Science and Solid State Physics
[2] Savitribai Phule Pune University (Formerly University of Pune),Department of Materials Science & Engineering
[3] Centre for Materials for Electronic Technology,undefined
[4] Chonnam National University,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Sodium-ion batteries are being explored as an alternative to the Li-ion batteries, due to the abundance of Na and similar electrochemistry with that of Li. In this study, we report the electrochemical activity of octahedron-like antimony trioxide nanostructures for Na-ion batteries, prepared with the simple hydrothermal oxidation of antimony precursor in alkaline condition. The microstructure reveals the formation of octahedron-like microcrystals with cubic antimony trioxide phase. In Na-ion cells, the antimony trioxide electrode exhibits a reversible specific capacity of 623 mAh g−1 on the first charge and long cycle stability of 200 cycles losing only 9% capacity. The exceptional electrochemical performance achieved by antimony trioxide is owing to the conversion and alloying reactions mechanism, which accelerates the kinetics of the reactions by stabilizing the structure of anode material.
引用
收藏
页码:3809 / 3818
页数:9
相关论文
共 50 条
  • [31] Recent Advances in Anode Materials for Sodium-Ion Batteries
    Bai, Xue
    Wu, Nannan
    Yu, Gengchen
    Li, Tao
    INORGANICS, 2023, 11 (07)
  • [32] Hard carbon anode materials for sodium-ion batteries
    El Moctar, Ismaila
    Ni, Qiao
    Bai, Ying
    Wu, Feng
    Wu, Chuan
    FUNCTIONAL MATERIALS LETTERS, 2018, 11 (06)
  • [33] A review on anode materials for lithium/sodium-ion batteries
    Abhimanyu Kumar Prajapati
    Ashish Bhatnagar
    Journal of Energy Chemistry, 2023, 83 (08) : 509 - 540
  • [34] Computational Screening of Anode Materials for Sodium-Ion Batteries
    Yu, Seungho
    Kim, Sang-Ok
    Kim, Hyung-Seok
    Choi, Wonchang
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (10) : A1915 - A1919
  • [35] Anode performance of mesocarbon microbeads for sodium-ion batteries
    Song, Li-Jun
    Liu, Shuang-Shuang
    Yu, Bao-Jun
    Wang, Cheng-Yang
    Li, Ming-Wei
    CARBON, 2015, 95 : 972 - 977
  • [36] Anode materials for fast charging sodium-ion batteries
    He, Zidong
    Huang, Yujie
    Liu, Huaxin
    Geng, Zhenglei
    Li, Yujin
    Li, Simin
    Deng, Wentao
    Zou, Guoqiang
    Hou, Hongshuai
    Ji, Xiaobo
    NANO ENERGY, 2024, 129
  • [37] Expanded graphite as superior anode for sodium-ion batteries
    Yang Wen
    Kai He
    Yujie Zhu
    Fudong Han
    Yunhua Xu
    Isamu Matsuda
    Yoshitaka Ishii
    John Cumings
    Chunsheng Wang
    Nature Communications, 5
  • [38] Advanced Anode Materials for Rechargeable Sodium-Ion Batteries
    Qiao, Shuangyan
    Zhou, Qianwen
    Ma, Meng
    Liu, Hua Kun
    Dou, Shi Xue
    Chong, Shaokun
    ACS NANO, 2023, 17 (12) : 11220 - 11252
  • [39] Expanded graphite as superior anode for sodium-ion batteries
    Wen, Yang
    He, Kai
    Zhu, Yujie
    Han, Fudong
    Xu, Yunhua
    Matsuda, Isamu
    Ishii, Yoshitaka
    Cumings, John
    Wang, Chunsheng
    NATURE COMMUNICATIONS, 2014, 5
  • [40] Carbon Anode Materials for Advanced Sodium-Ion Batteries
    Hou, Hongshuai
    Qiu, Xiaoqing
    Wei, Weifeng
    Zhang, Yun
    Ji, Xiaobo
    ADVANCED ENERGY MATERIALS, 2017, 7 (24)