Highly crystalline antimony oxide octahedron: an efficient anode for sodium-ion batteries

被引:0
|
作者
Ramchandra S. Kalubarme
Chan-Jin Park
Bharat B. Kale
Suresh W. Gosavi
机构
[1] Centre for Materials for Electronic Technology,Department of Physics, Centre for Advanced Studies in Material Science and Solid State Physics
[2] Savitribai Phule Pune University (Formerly University of Pune),Department of Materials Science & Engineering
[3] Centre for Materials for Electronic Technology,undefined
[4] Chonnam National University,undefined
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Sodium-ion batteries are being explored as an alternative to the Li-ion batteries, due to the abundance of Na and similar electrochemistry with that of Li. In this study, we report the electrochemical activity of octahedron-like antimony trioxide nanostructures for Na-ion batteries, prepared with the simple hydrothermal oxidation of antimony precursor in alkaline condition. The microstructure reveals the formation of octahedron-like microcrystals with cubic antimony trioxide phase. In Na-ion cells, the antimony trioxide electrode exhibits a reversible specific capacity of 623 mAh g−1 on the first charge and long cycle stability of 200 cycles losing only 9% capacity. The exceptional electrochemical performance achieved by antimony trioxide is owing to the conversion and alloying reactions mechanism, which accelerates the kinetics of the reactions by stabilizing the structure of anode material.
引用
收藏
页码:3809 / 3818
页数:9
相关论文
共 50 条
  • [21] The chance of sodium titanate anode for the practical sodium-ion batteries
    Feng Chen
    Haoyu Li
    Xianyan Qiao
    Ruoyang Wang
    Changyan Hu
    Ting Chen
    Yifan Niu
    Benhe Zhong
    Zhenguo Wu
    Xiaodong Guo
    Chinese Journal of Chemical Engineering, 2024, 72 (08) : 226 - 244
  • [22] The chance of sodium titanate anode for the practical sodium-ion batteries
    Chen, Feng
    Li, Haoyu
    Qiao, Xianyan
    Wang, Ruoyang
    Hu, Changyan
    Chen, Ting
    Niu, Yifan
    Zhong, Benhe
    Wu, Zhenguo
    Guo, Xiaodong
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2024, 72 : 226 - 244
  • [23] Faceted Antimony Particles with Interiors Reinforced with Reduced Graphene Oxide as High-Performance Anode Material for Sodium-Ion Batteries
    Amardeep, Amardeep
    Shende, Rashmi C.
    Gandharapu, Pranay
    Wani, M. Shaharyar
    Mukhopadhyay, Amartya
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (40) : 45296 - 45307
  • [24] A review on anode materials for lithium/sodium-ion batteries
    Prajapati, Abhimanyu Kumar
    Bhatnagar, Ashish
    JOURNAL OF ENERGY CHEMISTRY, 2023, 83 : 509 - 540
  • [25] 3R-NbS2 as a highly stable anode for sodium-ion batteries
    Vishwanathan, Savithri
    Chithaiah, Pallellappa
    Matte, H. S. S. Ramakrishna
    Rao, C. N. R.
    CHEMICAL COMMUNICATIONS, 2024, 60 (10) : 1309 - 1312
  • [26] Electrochemical investigation of MoSeTe as an anode for sodium-ion batteries
    Priya Mudgal
    Himani Arora
    Jayashree Pati
    Manish K. Singh
    Mahantesh Khetri
    Rajendra S. Dhaka
    Proceedings of the Indian National Science Academy, 2022, 88 : 430 - 438
  • [27] Structural design of anode materials for sodium-ion batteries
    Wang, Wanlin
    Li, Weijie
    Wang, Shun
    Miao, Zongcheng
    Liu, Hua Kun
    Chou, Shulei
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (15) : 6183 - 6205
  • [28] Electrochemical investigation of MoSeTe as an anode for sodium-ion batteries
    Mudgal, Priya
    Arora, Himani
    Pati, Jayashree
    Singh, Manish K.
    Khetri, Mahantesh
    Dhaka, Rajendra S.
    PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY, 2022, 88 (03): : 430 - 438
  • [29] Carbon nanoflakes as a promising anode for sodium-ion batteries
    Zhu, Xiaocui
    Savilov, S., V
    Ni, Jiangfeng
    Li, Liang
    FUNCTIONAL MATERIALS LETTERS, 2018, 11 (06)
  • [30] Advanced Nanostructured Anode Materials for Sodium-Ion Batteries
    Wang, Qidi
    Zhao, Chenglong
    Lu, Yaxiang
    Li, Yunming
    Zheng, Yuheng
    Qi, Yuruo
    Rong, Xiaohui
    Jiang, Liwei
    Qi, Xinguo
    Shao, Yuanjun
    Pan, Du
    Li, Baohua
    Hu, Yong-Sheng
    Chen, Liquan
    SMALL, 2017, 13 (42)