Biased Random Walk on the Trace of Biased Random Walk on the Trace of …

被引:0
|
作者
David Croydon
Mark Holmes
机构
[1] Kyoto University,Research Institute for Mathematical Sciences
[2] University of Melbourne,School of Mathematics and Statistics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We study the behaviour of a sequence of biased random walks (X(i))i≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X^{\scriptscriptstyle (i)})_{i \ge 0}$$\end{document} on a sequence of random graphs, where the initial graph is Zd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}^d$$\end{document} and otherwise the graph for the ith walk is the trace of the (i-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(i-1)$$\end{document}st walk. The sequence of bias vectors is chosen so that each walk is transient. We prove the aforementioned transience and a law of large numbers, and provide criteria for ballisticity and sub-ballisticity. We give examples of sequences of biases for which each (X(i))i≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X^{\scriptscriptstyle (i)})_{i \ge 1}$$\end{document} is (transient but) not ballistic, and the limiting graph is an infinite simple (self-avoiding) path. We also give examples for which each (X(i))i≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X^{\scriptscriptstyle (i)})_{i \ge 1}$$\end{document} is ballistic, but the limiting graph is not a simple path.
引用
收藏
页码:1341 / 1372
页数:31
相关论文
共 50 条
  • [31] The cover time of a biased random walk on a random regular graph of odd degree
    Johansson, Tony
    ELECTRONIC JOURNAL OF COMBINATORICS, 2020, 27 (04): : 1 - 29
  • [32] Biased random walk on random networks in presence of stochastic resetting: exact results
    Sarkar, Mrinal
    Gupta, Shamik
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (42)
  • [33] Diffusion about the mean drift location in a biased random walk
    Codling, Edward A.
    Bearon, Rachel N.
    Thorn, Graeme J.
    ECOLOGY, 2010, 91 (10) : 3106 - 3113
  • [34] Identifying several biased coins encountered by a hidden random walk
    Levin, DA
    Peres, Y
    RANDOM STRUCTURES & ALGORITHMS, 2004, 25 (01) : 91 - 114
  • [35] Speed of the biased random walk on a Galton-Watson tree
    Aidekon, Elie
    PROBABILITY THEORY AND RELATED FIELDS, 2014, 159 (3-4) : 597 - 617
  • [36] On the speed of once-reinforced biased random walk on trees
    Collevecchio, Andrea
    Holmes, Mark
    Kious, Daniel
    ELECTRONIC JOURNAL OF PROBABILITY, 2018, 23
  • [37] A Monotonicity Property for Once Reinforced Biased Random Walk on Zd
    Holmes, Mark
    Kious, Daniel
    SOJOURNS IN PROBABILITY THEORY AND STATISTICAL PHYSICS - III: INTERACTING PARTICLE SYSTEMS AND RANDOM WALKS, A FESTSCHRIFT FOR CHARLES M. NEWMAN, 2019, 300 : 255 - 273
  • [38] Statistical Inference for Nanopore Sequencing with a Biased Random Walk Model
    Emmett, Kevin J.
    Rosenstein, Jacob K.
    van de Meent, Jan-Willem
    Shepard, Ken L.
    Wiggins, Chris H.
    BIOPHYSICAL JOURNAL, 2015, 108 (08) : 1852 - 1855
  • [39] Biased random walk in a one-dimensional percolation model
    Axelson-Fisk, Marina
    Haggstrom, Olle
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2009, 119 (10) : 3395 - 3415
  • [40] Digital Camouflage Pattern Design Based on the Biased Random Walk
    Gan, Yuanying
    Liu, Chuntong
    He, Zhenxin
    Li, Hongcai
    Liu, Zhongye
    MODELLING AND SIMULATION IN ENGINEERING, 2022, 2022