Biased Random Walk on the Trace of Biased Random Walk on the Trace of …

被引:0
作者
David Croydon
Mark Holmes
机构
[1] Kyoto University,Research Institute for Mathematical Sciences
[2] University of Melbourne,School of Mathematics and Statistics
来源
Communications in Mathematical Physics | 2020年 / 375卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We study the behaviour of a sequence of biased random walks (X(i))i≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X^{\scriptscriptstyle (i)})_{i \ge 0}$$\end{document} on a sequence of random graphs, where the initial graph is Zd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}^d$$\end{document} and otherwise the graph for the ith walk is the trace of the (i-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(i-1)$$\end{document}st walk. The sequence of bias vectors is chosen so that each walk is transient. We prove the aforementioned transience and a law of large numbers, and provide criteria for ballisticity and sub-ballisticity. We give examples of sequences of biases for which each (X(i))i≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X^{\scriptscriptstyle (i)})_{i \ge 1}$$\end{document} is (transient but) not ballistic, and the limiting graph is an infinite simple (self-avoiding) path. We also give examples for which each (X(i))i≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X^{\scriptscriptstyle (i)})_{i \ge 1}$$\end{document} is ballistic, but the limiting graph is not a simple path.
引用
收藏
页码:1341 / 1372
页数:31
相关论文
共 26 条
[1]  
Barma M(1983)Directed diffusion in a percolation network J. Phys. C 16 1451-338
[2]  
Dhar D(2012)Biased random walks on Galton–Watson trees with leaves Ann. Probab. 40 280-242
[3]  
Ben Arous G(2003)The speed of biased random walk on percolation clusters Probab. Theory Relat. Fields 126 221-768
[4]  
Fribergh A(2018)Escape regimes of biased random walks on Galton–Watson trees Probab. Theory Relat. Fields 170 685-534
[5]  
Gantert N(2013)Slow movement of a random walk on the range of a random walk in the presence of an external field Probab. Theory Relat. Fields 157 515-507
[6]  
Hammond A(2013)Biased random walk on critical Galton–Watson trees conditioned to survive Probab. Theory Relat. Fields 157 453-246
[7]  
Berger N(1989)On the asymptotic behaviour of first passage times for transient random walk Probab. Theory Relat. Fields 81 239-245
[8]  
Gantert N(2014)Phase transition for the speed of the biased random walk on the supercritical percolation cluster Commun. Pure Appl. Math. 67 173-264
[9]  
Peres Y(1996)Biased random walks on Galton–Watson trees Probab. Theory Relat. Fields 106 249-323
[10]  
Bowditch A(1976)Large deviations for the trajectories of multidimensional random walks Teor. Verojatnost. i Primenen. 21 309-169