Symmetry and monotonicity of positive solutions to Schrödinger systems with fractional p-Laplacians

被引:0
作者
Ling-wei Ma
Zhen-qiu Zhang
机构
[1] Tianjin Normal University,School of Mathematical Sciences
[2] Nankai University,School of Mathematical Sciences and LPMC
来源
Applied Mathematics-A Journal of Chinese Universities | 2022年 / 37卷
关键词
fractional ; -Laplacian; Schrödinger systems; direct method of moving planes; radial symmetry; monotonicity; nonexistence; 35R11; 35B06; 35A01;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we first establish narrow region principle and decay at infinity theorems to extend the direct method of moving planes for general fractional p-Laplacian systems. By virtue of this method, we investigate the qualitative properties of positive solutions for the following Schrödinger system with fractional p-Laplacian {(−Δ)psu+aup−1=f(uv)(−Δ)ptv+bvp−1=g(uv)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ {\matrix{{( - \Delta )_p^su + a{u^{p - 1}} = f(u,v),} \cr {( - \Delta )_p^tv + b{v^{p - 1}} = g(u,v),} \cr } } \right.$$\end{document}
引用
收藏
页码:52 / 72
页数:20
相关论文
共 46 条
[1]  
Bjorland C(2012)Non-local gradient dependent operators Adv Math 230 1859-1894
[2]  
Caffarelli L(2012)Nonlocal tug-of-war and the infinity fractional Laplacian Comm Pure Appl Math 65 337-380
[3]  
Figalli A(2013)A concave-convex elliptic problem involving the fractional Laplacian Proc Roy Soc Edinburgh Sect 143 39-71
[4]  
Bjorland C(2007)An extension problem related to the fractional Laplacian Comm Partial Differential Equations 32 1245-1260
[5]  
Caffarelli L(2015)Liouville theorems involving the fractional Laplacian on a half space Adv Math 274 167-198
[6]  
Figalli A(2018)Maximum principles for the fractional p-Laplacian and symmetry of solutions Adv Math 335 735-758
[7]  
Brändle C(2017)A direct method of moving planes for the fractional Laplacian Adv Math 308 404-437
[8]  
Colorado E(2017)Maximum principles for a fully nonlinear fractional order equation and symmetry of solutions Calc Var Partial Differential Equations 56 29-343
[9]  
de Pablo A(2006)Classification of solutions for an integral equation Comm Pure Appl Math 59 330-354
[10]  
Sánchez U(2005)Qualitative properties of solutions for an integral equation Discrete Contin Dyn Syst 12 347-4785