Strong convergence of a modified Krasnoselski-Mann iterative algorithm for non-expansive mappings

被引:37
作者
Yao Y. [1 ]
Zhou H. [2 ]
Liou Y.-C. [3 ]
机构
[1] Department of Mathematics, Tianjin Polytechnic University
[2] Department of Mathematics, Shijiazhuang Mechanical Engineering College
[3] Department of Information Management, Cheng Shiu University
基金
中国国家自然科学基金;
关键词
Fixed point; Krasnoselski-Mann iterative algorithm; Non-expansive mapping; Strong convergence;
D O I
10.1007/s12190-008-0139-z
中图分类号
学科分类号
摘要
In this paper, we introduce a modified Krasnoselski-Mann iterative algorithm for non-expansive mappings. Furthermore, we prove that the proposed iterative algorithm converges strongly to a fixed point of a non-expansive mapping in Hilbert spaces.
引用
收藏
页码:383 / 389
页数:6
相关论文
共 15 条
[1]  
Browder F.E., Petryshyn W.V., Construction of fixed points of nonlinear mappings, J. Math. Anal. Appl., 20, pp. 197-228, (1967)
[2]  
Byrne C., A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Probl., 20, pp. 103-120, (2004)
[3]  
Podilchuk C.I., Mammone R.J., Image recovery by convex projections using a least-squares constraint, J. Opt. Soc. Am., 7, pp. 517-521, (1990)
[4]  
Reich S., Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl., 67, pp. 274-276, (1979)
[5]  
Genel A., Lindenstrass J., An example concerning fixed points, Isr. J. Math., 22, pp. 81-86, (1975)
[6]  
Xu H.K., Iterative algorithms for nonlinear operators, J. Lond. Math. Soc., 2, pp. 240-256, (2002)
[7]  
Borwein J., Reich S., Shafrir I., Krasnoselski-Mann iterations in normed spaces, Can. Math. Bull., 35, pp. 21-28, (1992)
[8]  
Eckstein J., Bertsekas D.P., On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators, Math. Program., 55, pp. 293-318, (1992)
[9]  
Yang Q., Zhao J., Generalized KM theorems and their applications, Inverse Probl., 21, pp. 1971-1979, (2006)
[10]  
Zhao J., Yang Q., A note on the Krasnoselski-Mann theorem and its generalizations, Inverse Probl., 23, pp. 1011-1016, (2007)