Meyer–Neldel energy in Se-based binary and ternary chalcogenide glasses

被引:0
|
作者
Ram Murti
S K Tripathi
Navdeep Goyal
Satya Prakash
机构
[1] Panjab University,Centre of Advanced Study in Physics, Department of Physics
来源
Pramana | 2018年 / 91卷
关键词
Chalcogenide glasses; Meyer–Neldel energy; DC conductivity; defect density; polaron hopping; band gap; 71.55.Gs; 72.80.Ey;
D O I
暂无
中图分类号
学科分类号
摘要
The integral equations for DC conductivity and external conductance for the network of localised states in amorphous solids are solved by iteration method. The random free energy barriers and single polaron hopping model are used to obtain the DC conductivity σDC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _{\mathrm {DC}}$$\end{document} and Meyer–Neldel energy EMN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{\mathrm {MN}}$$\end{document}. The experimental estimates of optical band gap Eg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{\mathrm {g}}$$\end{document}, dielectric function ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}, glass transition temperature Tg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{\mathrm {g}}$$\end{document} and σDC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _{\mathrm {DC}}$$\end{document} are used to calculate EMN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{\mathrm {MN}}$$\end{document} for Se-based binary and ternary chalcogenide glasses. The calculated values are found to be in agreement with the available experimental data. EMN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{\mathrm {MN}}$$\end{document} increases with increase of attempt frequency. The true pre-exponential factor σ00\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _{00}$$\end{document} is related to EMN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{\mathrm {MN}}$$\end{document} as lnσ00=p-qEMN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ln \sigma _{00}=p-qE_{\mathrm {MN}}$$\end{document}, where p is nearly 7.3 and q is material-dependent. The calculated values of EMN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{\mathrm {MN}}$$\end{document} and σ00\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _{00}$$\end{document} suggest that DC conduction in these chalcogenides is due to acoustic and optical phonon-assisted polaron hopping.
引用
收藏
相关论文
共 50 条
  • [41] Calculation of Component Activities for Se-Based Binary Systems by NRTL Equation
    Weiyi Wang
    Bei He
    Guozheng Zha
    Baoqiang Xu
    Wenlong Jiang
    Hongwei Yang
    Journal of Solution Chemistry, 2023, 52 : 881 - 894
  • [43] INFRARED STUDIES OF SE-BASED POLYNARY CHALCOGENIDE GLASSES(II) - YXZXSE100-2X (Y=GE,AS - Z=AS,TE)
    OHSAKA, T
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 1976, 22 (01) : 89 - 96
  • [44] INFRARED STUDIES OF SE-BASED POLYNARY CHALCOGENIDE GLASSES .1. YXSXSE100-2X(Y=GE,AS,TE)
    OHSAKA, T
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 1976, 21 (01) : 23 - 29
  • [45] Calculation of Component Activities for Se-Based Binary Systems by NRTL Equation
    Wang, Weiyi
    He, Bei
    Zha, Guozheng
    Xu, Baoqiang
    Jiang, Wenlong
    Yang, Hongwei
    JOURNAL OF SOLUTION CHEMISTRY, 2023, 52 (08) : 881 - 894
  • [46] Explanation of Meyer–Neldel rule in the thermally activated a.c. conduction in some chalcogenide glasses using correlated barrier hopping model
    N. Chandel
    N. Mehta
    Journal of Materials Science, 2012, 47 : 6693 - 6698
  • [47] INFRARED STUDIES OF SE-BASED POLYNARY CHALCOGENIDE GLASSES .3. YXZXSXSE100-3X (Y=GE,AS,Z=AS,TE)
    OHSAKA, T
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 1976, 22 (02) : 359 - 366
  • [48] Investigation of the Meyer-Neldel compensation rule in binary selenium-based amorphous semiconductors
    Kotkata, M. F.
    Mansour, Sh. A.
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2012, 358 (23) : 3342 - 3347
  • [49] Structural ordering in Ag-based ternary chalcogenide glasses
    Liu, J
    Salmon, PS
    EUROPHYSICS LETTERS, 1997, 39 (05): : 521 - 526
  • [50] Study of High field conduction in Se based Chalcogenide glasses
    Yaduvanshi, N.
    JOURNAL OF OPTOELECTRONIC AND BIOMEDICAL MATERIALS, 2022, 14 (03): : 129 - 136