Meyer–Neldel energy in Se-based binary and ternary chalcogenide glasses

被引:0
|
作者
Ram Murti
S K Tripathi
Navdeep Goyal
Satya Prakash
机构
[1] Panjab University,Centre of Advanced Study in Physics, Department of Physics
来源
Pramana | 2018年 / 91卷
关键词
Chalcogenide glasses; Meyer–Neldel energy; DC conductivity; defect density; polaron hopping; band gap; 71.55.Gs; 72.80.Ey;
D O I
暂无
中图分类号
学科分类号
摘要
The integral equations for DC conductivity and external conductance for the network of localised states in amorphous solids are solved by iteration method. The random free energy barriers and single polaron hopping model are used to obtain the DC conductivity σDC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _{\mathrm {DC}}$$\end{document} and Meyer–Neldel energy EMN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{\mathrm {MN}}$$\end{document}. The experimental estimates of optical band gap Eg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{\mathrm {g}}$$\end{document}, dielectric function ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}, glass transition temperature Tg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_{\mathrm {g}}$$\end{document} and σDC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _{\mathrm {DC}}$$\end{document} are used to calculate EMN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{\mathrm {MN}}$$\end{document} for Se-based binary and ternary chalcogenide glasses. The calculated values are found to be in agreement with the available experimental data. EMN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{\mathrm {MN}}$$\end{document} increases with increase of attempt frequency. The true pre-exponential factor σ00\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _{00}$$\end{document} is related to EMN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{\mathrm {MN}}$$\end{document} as lnσ00=p-qEMN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ln \sigma _{00}=p-qE_{\mathrm {MN}}$$\end{document}, where p is nearly 7.3 and q is material-dependent. The calculated values of EMN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{\mathrm {MN}}$$\end{document} and σ00\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _{00}$$\end{document} suggest that DC conduction in these chalcogenides is due to acoustic and optical phonon-assisted polaron hopping.
引用
收藏
相关论文
共 50 条
  • [1] Meyer-Neldel energy in Se-based binary and ternary chalcogenide glasses
    Murti, Ram
    Tripathi, S. K.
    Goyal, Navdeep
    Prakash, Satya
    PRAMANA-JOURNAL OF PHYSICS, 2018, 91 (02):
  • [2] Kinetic fragility of Se-based binary chalcogenide glasses
    Svoboda, Roman
    Malek, Jiri
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2015, 419 : 39 - 44
  • [3] Activation energy during the crystallization transition for Se-based chalcogenide glasses
    Atyia, H. E.
    Hegab, N. A.
    OPTIK, 2021, 243
  • [4] The Meyer-Neldel rule in chalcogenide glasses
    Shimakawa, K
    AbdelWahab, F
    APPLIED PHYSICS LETTERS, 1997, 70 (05) : 652 - 654
  • [5] Meyer–Neldel DC conduction in chalcogenide glasses
    S PRAKASH
    KULBIR KAUR
    NAVDEEP GOYAL
    S K Tripathi
    Pramana, 2011, 76 : 629 - 637
  • [6] Glass-formation region of ternary Sn–Sb–Se-based chalcogenide glasses
    A. B. Adam
    S. Sakrani
    Y. Wahab
    Journal of Materials Science, 2005, 40 : 1571 - 1576
  • [7] Meyer-Neldel conductivity prefactor for chalcogenide glasses
    Applied Physics Letters, 1997, 71 (24):
  • [8] Meyer-Neldel DC conduction in chalcogenide glasses
    Prakash, S.
    Kaur, Kulbir
    Goyal, Navdeep
    Tripathi, S. K.
    PRAMANA-JOURNAL OF PHYSICS, 2011, 76 (04): : 629 - 637
  • [9] The Meyer-Neldel conductivity prefactor for chalcogenide glasses
    Yelon, A
    Movaghar, B
    APPLIED PHYSICS LETTERS, 1997, 71 (24) : 3549 - 3551
  • [10] VARIATION OF BAND-GAP IN SE-BASED CHALCOGENIDE GLASSES
    NANG, TT
    OKUDA, M
    MATSUSHITA, T
    SOLID STATE COMMUNICATIONS, 1978, 27 (06) : 653 - 656