Scattering for a Radial Defocusing Inhomogeneous Choquard Equation

被引:0
作者
Tarek Saanouni
Congming Peng
机构
[1] Qassim University,Department of Mathematics, College of Science and Arts in Uglat Asugour
[2] University of Tunis El Manar,Faculty of Science of Tunis, LR03ES04 partial differential Equations and applications
[3] Tianshui Normal University,School of Mathematics and Statistics
来源
Acta Applicandae Mathematicae | 2022年 / 177卷
关键词
Inhomogeneous Choquard equation; Decay; Scattering; 35Q55;
D O I
暂无
中图分类号
学科分类号
摘要
This work considers the long time behavior of the solutions u∈C(R,H1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u\in C(\mathbb{R},H^{1})$\end{document} to the attractive Hartree equation iu˙+Δu=(Iα∗|⋅|−γ|u|p)|x|−γ|u|p−2u.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ i\dot{u}+\Delta u=(I_{\alpha }*|\cdot |^{-\gamma }|u|^{p})|x|^{-\gamma }|u|^{p-2}u. $$\end{document} Indeed, using a classical Morawetz estimate, the scattering of radial global solutions is proved in L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{2}$\end{document}-super-critical and H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H^{1}$\end{document}-sub-critical regimes.
引用
收藏
相关论文
共 20 条
  • [1] Alharbi M.G.(2019)Sharp threshold of global well-posedness vs finite time blow-up for a class of inhomogeneous Choquard equations J. Math. Phys. 60 283-293
  • [2] Saanouni T.(1998)An eigenvalue problem for the Schrödinger-Maxwell equations Topol. Methods Nonlinear Anal. 11 411-434
  • [3] Benci V.(2019)Energy scattering for a class of the defocusing inhomogeneous nonlinear Schrödinger equation J. Evol. Equ. 19 431-445
  • [4] Fortunato D.(2015)On the Cauchy problem for the Schrödinger-Hartree equation Evol. Equ. Control Theory 4 21-36
  • [5] Dinh V.D.(2018)Asymptotics for a class of heat equations with inhomogeneous non-linearity Analysis 38 1245-1256
  • [6] Feng B.(1981)Some remarks on Hartree equation Nonlinear Anal. 5 153-184
  • [7] Yuan X.(2013)Groundstates of non-linear Choquard equations: existence, qualitative properties and decay asymptotics J. Funct. Anal. 265 655-674
  • [8] Ghanmi R.(2006)The Schrödinger-Poisson equation under the effect of a nonlinear local term J. Funct. Anal. 237 1004-1029
  • [9] Saanouni T.(2019)A note on the fractional Schrödinger equation of Choquard type J. Math. Anal. Appl. 470 41-1571
  • [10] Lions P.-L.(2019)Scattering threshold for the focusing Choquard equation Nonlinear Differ. Equ. Appl. 26 1551-455