Solutions of affine stochastic functional differential equations in the state space

被引:0
作者
Markus Riedle
机构
[1] The University of Manchester,School of Mathematics
来源
Journal of Evolution Equations | 2008年 / 8卷
关键词
60H20; 60J35; 47D07; 60G48; 34K50; Stochastic functional differential equation; Stochastic differential equation with infinite delay; Generalized Gaussian Mehler semigroup; Ornstein-Uhlenbeck semigroup; Variation of constants formula;
D O I
暂无
中图分类号
学科分类号
摘要
We consider solutions of affine stochastic functional differential equations on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}}^d$$\end{document}. The drift of these equations is specified by a functional defined on a general function space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{B}}$$\end{document} which is only described axiomatically. The solutions are reformulated as stochastic processes in the space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{B}}$$\end{document}. By representing such a process in the bidual space of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{B}}$$\end{document} we establish that the transition functions of this process form a generalized Gaussian Mehler semigroup on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{B}}$$\end{document}. This way the process is characterized completely on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{B}}$$\end{document} since it is Markovian.
引用
收藏
页码:71 / 97
页数:26
相关论文
共 50 条
  • [41] SOLUTIONS OF SECOND ORDER ABSTRACT RETARDED FUNCTIONAL DIFFERENTIAL EQUATIONS ON THE LINE
    Cuevas, Claudio
    Henriquez, Hernan R.
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2011, 12 (02) : 225 - 240
  • [42] Stochastic averaging principle for neutral stochastic functional differential equations driven by G-Levy process
    Shen, Guangjun
    Fan, Jingjing
    Wu, Jiang-Lun
    Wang, Zhi
    STOCHASTICS AND DYNAMICS, 2024, 24 (04)
  • [43] Massera's theorem for almost periodic solutions of functional differential equations
    Murakami, S
    Naito, T
    Van Minh, N
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2004, 56 (01) : 247 - 268
  • [44] A variation-of-constants formula for abstract functional differential equations in the phase space
    Hino, Y
    Murakami, S
    Naito, T
    Van Minh, N
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 179 (01) : 336 - 355
  • [45] Mean square asymptotic stability characterisation of perturbed linear stochastic functional differential equations
    Appleby, John A. D.
    Lawless, Emmet
    APPLIED NUMERICAL MATHEMATICS, 2024, 200 : 80 - 109
  • [46] Mild solutions for some nonautonomous partial functional differential equations with infinite delay
    Alia M.
    Ezzinbi K.
    Kpoumiè M.E.-K.
    Afrika Matematika, 2018, 29 (7-8) : 1115 - 1133
  • [47] Strong convergence of the truncated Euler-Maruyama method for stochastic functional differential equations
    Zhang, Wei
    Song, M. H.
    Liu, M. Z.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (12) : 2363 - 2387
  • [48] Existence and uniqueness theorems for periodic Markov process and applications to stochastic functional differential equations
    Hu, Hongxiao
    Xu, Liguang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 466 (01) : 896 - 926
  • [49] Pseudo almost periodic solutions of infinite class for some functional differential equations
    Ezzinbi, Khalil
    Zabsonre, Issa
    APPLICABLE ANALYSIS, 2013, 92 (08) : 1627 - 1642
  • [50] pTH MOMENT EXPONENTIAL STABILITY OF HYBRID STOCHASTIC FUNCTIONAL DIFFERENTIAL EQUATIONS BY FEEDBACK CONTROL BASED ON DISCRETE-TIME STATE OBSERVATIONS
    Zhao, Yuyun
    Zhang, Yi
    Xu, Tao
    Bai, Ling
    Zhang, Qian
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (01): : 209 - 226