Solutions of affine stochastic functional differential equations in the state space

被引:0
作者
Markus Riedle
机构
[1] The University of Manchester,School of Mathematics
来源
Journal of Evolution Equations | 2008年 / 8卷
关键词
60H20; 60J35; 47D07; 60G48; 34K50; Stochastic functional differential equation; Stochastic differential equation with infinite delay; Generalized Gaussian Mehler semigroup; Ornstein-Uhlenbeck semigroup; Variation of constants formula;
D O I
暂无
中图分类号
学科分类号
摘要
We consider solutions of affine stochastic functional differential equations on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}}^d$$\end{document}. The drift of these equations is specified by a functional defined on a general function space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{B}}$$\end{document} which is only described axiomatically. The solutions are reformulated as stochastic processes in the space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{B}}$$\end{document}. By representing such a process in the bidual space of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{B}}$$\end{document} we establish that the transition functions of this process form a generalized Gaussian Mehler semigroup on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{B}}$$\end{document}. This way the process is characterized completely on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{B}}$$\end{document} since it is Markovian.
引用
收藏
页码:71 / 97
页数:26
相关论文
共 50 条
  • [31] Khasminskii-type theorem for a class of stochastic functional differential equations
    Ma, Li
    Wang, Ru
    Yan, Liangqing
    OPEN MATHEMATICS, 2022, 20 (01): : 689 - 706
  • [32] An explicit approximation for super-linear stochastic functional differential equations
    Li, Xiaoyue
    Mao, Xuerong
    Song, Guoting
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2024, 169
  • [33] EXPONENTIAL GROWTH IN THE SOLUTION OF AN AFFINE STOCHASTIC DIFFERENTIAL EQUATION WITH AN AVERAGE FUNCTIONAL AND FINANCIAL MARKET BUBBLES
    Appleby, John A. D.
    Daniels, John A.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 31 : 91 - 101
  • [34] Non-densely defined impulsive neutral stochastic functional differential equations driven by fBm in Hilbert space with infinite delay
    Ren, Yong
    Hou, Tingting
    Sakthivel, R.
    FRONTIERS OF MATHEMATICS IN CHINA, 2015, 10 (02) : 351 - 365
  • [35] Exponential stability of stochastic functional differential equations with impulsive perturbations and Markovian switching
    Tran, Ky Q.
    Yin, George
    SYSTEMS & CONTROL LETTERS, 2023, 173
  • [36] An averaging principle for two-time-scale stochastic functional differential equations
    Wu, Fuke
    Yin, George
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (01) : 1037 - 1077
  • [37] Strong convergence of implicit numerical methods for nonlinear stochastic functional differential equations
    Zhou, Shaobo
    Jin, Hai
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 324 : 241 - 257
  • [38] Exponential stability and instability of impulsive stochastic functional differential equations with Markovian switching
    Kao, Yonggui
    Zhu, Quanxin
    Qi, Wenhai
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 271 : 795 - 804
  • [39] Harnack inequalities for stochastic (functional) differential equations with non-Lipschitzian coefficients
    Shao, Jinghai
    Wang, Feng-Yu
    Yuan, Chenggui
    ELECTRONIC JOURNAL OF PROBABILITY, 2012, 17 : 1 - 18
  • [40] Non-densely defined impulsive neutral stochastic functional differential equations driven by fBm in Hilbert space with infinite delay
    Yong Ren
    Tingting Hou
    R. Sakthivel
    Frontiers of Mathematics in China, 2015, 10 : 351 - 365