Factors associated with engraftment success of patient-derived xenografts of breast cancer

被引:4
作者
Lee, Jongwon [1 ]
Lee, Gunhee [1 ]
Park, Hye Seon [2 ]
Jeong, Byung-Kwan [1 ]
Gong, Gyungyub [1 ]
Jeong, Jae Ho [3 ]
Lee, Hee Jin [1 ,2 ]
机构
[1] Univ Ulsan, Coll Med, Asan Med Ctr, Dept Pathol, 88 Olymp Ro 43 Gil, Seoul 05505, South Korea
[2] NeogenTC Corp, Seoul, South Korea
[3] Univ Ulsan, Coll Med, Asan Med Ctr, Dept Oncol, 88 Olymp Ro 43 Gil, Seoul 05505, South Korea
基金
新加坡国家研究基金会;
关键词
Breast cancer; Patient-derived xenograft; Engraftment; Deep learning; Artificial intelligence; Morphometrics; Neoadjuvant chemotherapy; Young age; Triple-negative breast cancer; TUMOR XENOGRAFTS; THERAPY;
D O I
10.1186/s13058-024-01794-w
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background Patient-derived xenograft (PDX) models serve as a valuable tool for the preclinical evaluation of novel therapies. They closely replicate the genetic, phenotypic, and histopathological characteristics of primary breast tumors. Despite their promise, the rate of successful PDX engraftment is various in the literature. This study aimed to identify the key factors associated with successful PDX engraftment of primary breast cancer. Methods We integrated clinicopathological data with morphological attributes quantified using a trained artificial intelligence (AI) model to identify the principal factors affecting PDX engraftment. Results Multivariate logistic regression analyses demonstrated that several factors, including a high Ki-67 labeling index (Ki-67LI) (p < 0.001), younger age at diagnosis (p = 0.032), post neoadjuvant chemotherapy (NAC) (p = 0.006), higher histologic grade (p = 0.039), larger tumor size (p = 0.029), and AI-assessed higher intratumoral necrosis (p = 0.027) and intratumoral invasive carcinoma (p = 0.040) proportions, were significant factors for successful PDX engraftment (area under the curve [AUC] 0.905). In the NAC group, a higher Ki-67LI (p < 0.001), lower Miller-Payne grade (p < 0.001), and reduced proportion of intratumoral normal breast glands as assessed by AI (p = 0.06) collectively provided excellent prediction accuracy for successful PDX engraftment (AUC 0.89). Conclusions We found that high Ki-67LI, younger age, post-NAC status, higher histologic grade, larger tumor size, and specific morphological attributes were significant factors for predicting successful PDX engraftment of primary breast cancer.
引用
收藏
页数:15
相关论文
共 31 条
[1]   Classification of breast cancer histology images using Convolutional Neural Networks [J].
Araujo, Teresa ;
Aresta, Guilherme ;
Castro, Eduardo ;
Rouco, Jose ;
Aguiar, Paulo ;
Eloy, Catarina ;
Polonia, Antonio ;
Campilho, Aurelio .
PLOS ONE, 2017, 12 (06)
[2]   Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer [J].
Bejnordi, Babak Ehteshami ;
Veta, Mitko ;
van Diest, Paul Johannes ;
van Ginneken, Bram ;
Karssemeijer, Nico ;
Litjens, Geert ;
van der Laak, Jeroen A. W. M. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (22) :2199-2210
[3]   Aldehyde Dehydrogenase 1-Positive Cancer Stem Cells Mediate Metastasis and Poor Clinical Outcome in Inflammatory Breast Cancer [J].
Charafe-Jauffret, Emmanuelle ;
Ginestier, Christophe ;
Iovino, Flora ;
Tarpin, Carole ;
Diebel, Mark ;
Esterni, Benjamin ;
Houvenaeghel, Gilles ;
Extra, Jean-Marc ;
Bertucci, Francois ;
Jacquemier, Jocelyne ;
Xerri, Luc ;
Dontu, Gabriela ;
Stassi, Giorgio ;
Xiao, Yi ;
Barsky, Sanford H. ;
Birnbaum, Daniel ;
Viens, Patrice ;
Wicha, Max S. .
CLINICAL CANCER RESEARCH, 2010, 16 (01) :45-55
[4]   The Essential Factors of Establishing Patient-derived Tumor Model [J].
Chen, Chuanzhi ;
Lin, Wu ;
Huang, Yingying ;
Chen, Xiangliu ;
Wang, Haohao ;
Teng, Lisong .
JOURNAL OF CANCER, 2021, 12 (01) :28-37
[5]   Lobular breast cancer: Clinical, molecular and morphological characteristics [J].
Christgen, Matthias ;
Steinemann, Doris ;
Kuehnle, Elna ;
Laenger, Florian ;
Gluz, Oleg ;
Harbeck, Nadia ;
Kreipe, Hans .
PATHOLOGY RESEARCH AND PRACTICE, 2016, 212 (07) :583-597
[6]   Modeling of response to endocrine therapy in a panel of human luminal breast cancer xenografts [J].
Cottu, P. ;
Marangoni, E. ;
Assayag, F. ;
de Cremoux, P. ;
Vincent-Salomon, A. ;
Guyader, Ch ;
de Plater, L. ;
Elbaz, C. ;
Karboul, N. ;
Fontaine, J. J. ;
Chateau-Joubert, S. ;
Boudou-Rouquette, P. ;
Alran, S. ;
Dangles-Marie, V. ;
Gentien, D. ;
Poupon, M-F. ;
Decaudin, D. .
BREAST CANCER RESEARCH AND TREATMENT, 2012, 133 (02) :595-606
[7]   Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features [J].
Creighton, Chad J. ;
Li, Xiaoxian ;
Landis, Melissa ;
Dixon, J. Michael ;
Neumeister, Veronique M. ;
Sjolund, Ashley ;
Rimm, David L. ;
Wong, Helen ;
Rodriguez, Angel ;
Herschkowitz, Jason I. ;
Fan, Cheng ;
Zhang, Xiaomei ;
He, Xiaping ;
Pavlick, Anne ;
Gutierrez, M. Carolina ;
Renshaw, Lorna ;
Larionov, Alexey A. ;
Faratian, Dana ;
Hilsenbeck, Susan G. ;
Perou, Charles M. ;
Lewis, Michael T. ;
Rosen, Jeffrey M. ;
Chang, Jenny C. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (33) :13820-13825
[8]   Automatic detection of invasive ductal carcinoma in whole slide images with Convolutional Neural Networks [J].
Cruz-Roa, Angel ;
Basavanhally, Ajay ;
Gonzalez, Fabio ;
Gilmore, Hannah ;
Feldman, Michael ;
Ganesan, Shridar ;
Shih, Natalie ;
Tomaszewski, John ;
Madabhushi, Anant .
MEDICAL IMAGING 2014: DIGITAL PATHOLOGY, 2014, 9041
[9]   Association of reactive oxygen species levels and radioresistance in cancer stem cells [J].
Diehn, Maximilian ;
Cho, Robert W. ;
Lobo, Neethan A. ;
Kalisky, Tomer ;
Dorie, Mary Jo ;
Kulp, Angela N. ;
Qian, Dalong ;
Lam, Jessica S. ;
Ailles, Laurie E. ;
Wong, Manzhi ;
Joshua, Benzion ;
Kaplan, Michael J. ;
Wapnir, Irene ;
Dirbas, Frederick M. ;
Somlo, George ;
Garberoglio, Carlos ;
Paz, Benjamin ;
Shen, Jeannie ;
Lau, Sean K. ;
Quake, Stephen R. ;
Brown, J. Martin ;
Weissman, Irving L. ;
Clarke, Michael F. .
NATURE, 2009, 458 (7239) :780-U123
[10]   Predictors of success in establishing orthotopic patient-derived xenograft models of triple negative breast cancer [J].
Echeverria, Gloria, V ;
Cai, Shirong ;
Tu, Yizheng ;
Shao, Jiansu ;
Powell, Emily ;
Redwood, Abena B. ;
Jiang, Yan ;
McCoy, Aaron ;
Rinkenbaugh, Amanda L. ;
Lau, Rosanna ;
Trevarton, Alexander J. ;
Fu, Chunxiao ;
Gould, Rebekah ;
Ravenberg, Elizabeth E. ;
Huo, Lei ;
Candelaria, Rosalind ;
Santiago, Lumarie ;
Adrada, Beatriz E. ;
Lane, Deanna L. ;
Rauch, Gaiane M. ;
Yang, Wei T. ;
White, Jason B. ;
Chang, Jeffrey T. ;
Moulder, Stacy L. ;
Symmans, W. Fraser ;
Hilsenbeck, Susan G. ;
Piwnica-Worms, Helen .
NPJ BREAST CANCER, 2023, 9 (01)