2D BPS rings from sphere partition functions

被引:0
作者
Nafiz Ishtiaque
机构
[1] Perimeter Institute for Theoretical Physics,Department of Physics
[2] University of Waterloo,undefined
来源
Journal of High Energy Physics | / 2018卷
关键词
Conformal Field Theory; Extended Supersymmetry; Supersymmetric Gauge Theory;
D O I
暂无
中图分类号
学科分类号
摘要
We consider extremal correlation functions, involving arbitrary number of BPS (chiral or twisted chiral) operators and exactly one anti-BPS operator in 2D N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = (2, 2) theories. These correlators define the structure constants in the rings generated by the BPS operators with their operator product expansions. We present a way of computing these correlators from the sphere partition function of a deformed theory using localization. Relating flat space and sphere correlators is nontrivial due to operator mixing on the sphere induced by conformal anomaly. We discuss the supergravitational source of this complication and a resolution thereof. Finally, we demonstrate the process for the Quintic GLSM and the Landau-Ginzburg minimal models.
引用
收藏
相关论文
共 69 条
[1]  
Witten E(1988)Topological σ-models Commun. Math. Phys. 118 411-undefined
[2]  
Witten E(1998)Mirror manifolds and topological field theory AMS/IP Stud. Adv. Math. 9 121-undefined
[3]  
Witten E(1993) = 2 Nucl. Phys. B 403 159-undefined
[4]  
Gerchkovitz E(2017)Correlation Functions of Coulomb Branch Operators JHEP 01 103-undefined
[5]  
Gomis J(2012)Localization of gauge theory on a four-sphere and supersymmetric Wilson loops Commun. Math. Phys. 313 71-undefined
[6]  
Ishtiaque N(2013) = 2 JHEP 05 093-undefined
[7]  
Karasik A(2013)Exact Kähler Potential from Gauge Theory and Mirror Symmetry JHEP 04 019-undefined
[8]  
Komargodski Z(2013)Gauge theory dynamics and Kähler potential for Calabi-Yau complex moduli JHEP 12 099-undefined
[9]  
Pufu SS(2015) = (2 Commun. Math. Phys. 334 1483-undefined
[10]  
Pestun V(2018) 2) JHEP 03 065-undefined