Bogomolov–Sommese type vanishing theorem for holomorphic vector bundles equipped with positive singular Hermitian metrics

被引:0
作者
Yuta Watanabe
机构
[1] The University of Tokyo,
来源
Mathematische Zeitschrift | 2023年 / 303卷
关键词
-estimates; Singular Hermitian metrics; Cohomology vanishing; Nakano positivity; 32L20; 32L10; 14F17; 14F18;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we obtain the Bogomolov–Sommese type vanishing theorem involving multiplier ideal sheaves for big line bundles. We define a dual Nakano semi-positivity of singular Hermitian metrics with L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document}-estimates and prove a vanishing theorem which is a generalization of the Bogomolov–Sommese type vanishing theorem to holomorphic vector bundles.
引用
收藏
相关论文
共 27 条
[1]  
Berndtsson B(2009)Curvature of vector bundles associated to holomorphic fibrations Ann. Math. 169 531-560
[2]  
Berndtsson B(2008)Bergman kernels and the pseudoeffectivity of relative canonical bundles Duke Math. J. 145 341-378
[3]  
Păun M(1998)Singular Hermitian metrics on vector bundles J. Reine Angew. Math. 502 93-122
[4]  
de Cataldo MAA(1982)Estimations Ann. Sci. Ec. Norm. Sup. 15 457-511
[5]  
Demailly JP(1993) pour l’opérateur J. Differ. Geom. 37 323-374
[6]  
Demailly JP(2022) d’un fibré vectoriel holomorphe semi-positif au dessus d’une variété Kählérienne complète Math. Ann. 64 1745-1756
[7]  
Deng F(2021)A numerical criterion for very ample line bundles Sci. China Math. 69 79-96
[8]  
Ning J(2020)Positivity of holomorphic vector bundles in terms of Mich. Math. J. 359 169-179
[9]  
Wang Z(2021)-conditions of Compt. Rendus Math. Tome 9 69-92
[10]  
Zhou X(2022)A converse of Hörmander’s Algebr. Geometry 22 303-331