Regularity for minimizers of functionals with nonstandard growth by A-harmonic approximation

被引:0
作者
Jens Habermann
Anna Zatorska–Goldstein
机构
[1] Friedrich-Alexander University,Department of Mathematics
[2] University of Warsaw,Institute of Applied Mathematics and Mechanics
来源
Nonlinear Differential Equations and Applications NoDEA | 2008年 / 15卷
关键词
49N60; 35J50; Quasiconvex integral functionals; nonstandard growth; (; ) growth; partial regularity; -harmonic approximation; Hölder continuity;
D O I
暂无
中图分类号
学科分类号
摘要
We prove partial regularity for minimizers of quasiconvex functionals of the type \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\int_{\Omega}}f(x,Du) dx$$\end{document} with p(x) growth with respect to the second variable. The proof is direct and it uses a method of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{A}$$\end{document}–harmonic approximation.
引用
收藏
页码:169 / 194
页数:25
相关论文
empty
未找到相关数据