Compact and Weakly Compact Multipliers of Locally Compact Quantum Groups

被引:0
|
作者
Alireza Medghalchi
Ahmad Mollakhalili
机构
[1] Kharazmi University (Tarbiat Moallem University),Department of Mathematics
关键词
Locally compact quantum groups; (Weakly) compact operators; Amenability; Module homomorphims; Primary 46L89; Secondary 22D25; 46L51;
D O I
暂无
中图分类号
学科分类号
摘要
A locally compact group G is compact if and only if its convolution algebra has a non-zero (weakly) compact multiplier. Dually, G is discrete if and only if its Fourier algebra has a non-zero (weakly) compact multiplier. In addition, G is compact (respectively, amenable) if and only if the second dual of its convolution algebra equipped with the first Arens product has a non-zero (weakly) compact left (respectively, right) multiplier. We prove the non-commutative versions of these results in the case of locally compact quantum groups.
引用
收藏
页码:101 / 136
页数:35
相关论文
共 50 条
  • [1] Compact and Weakly Compact Multipliers of Locally Compact Quantum Groups
    Medghalchi, Alireza
    Mollakhalili, Ahmad
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2018, 44 (01) : 101 - 136
  • [2] Averaging multipliers on locally compact quantum groups
    Daws, Matthew
    Krajczok, Jacek
    Voigt, Christian
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2025, 111 (03):
  • [3] Module homomorphisms and multipliers on locally compact quantum groups
    Ramezanpour, M.
    Vishki, H. R. E.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 359 (02) : 581 - 587
  • [4] Weakly compact multipliers on Banach algebras related to a locally compact group
    M. J. Mehdipour
    R. Nasr-Isfahani
    Acta Mathematica Hungarica, 2010, 127 : 195 - 206
  • [5] Weakly compact multipliers on Banach algebras related to a locally compact group
    Mehdipour, M. J.
    Nasr-Isfahani, R.
    ACTA MATHEMATICA HUNGARICA, 2010, 127 (03) : 195 - 206
  • [6] Completely bounded multipliers over locally compact quantum groups
    Hu, Zhiguo
    Neufang, Matthias
    Ruan, Zhong-Jin
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2011, 103 : 1 - 39
  • [7] COMPACT LEFT MULTIPLIERS ON BANACH ALGEBRAS RELATED TO LOCALLY COMPACT GROUPS
    Mehdipour, M. J.
    Nasr-Isfahani, R.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2009, 79 (02) : 227 - 238
  • [8] WEAKLY COMPACT MULTIPLIERS
    COMISKY, CV
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 18 (06): : 961 - &
  • [9] Locally compact quantum groups
    Kustermans, J
    Vaes, S
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2000, 33 (06): : 837 - 934
  • [10] Locally compact quantum groups
    Kustermans, Johan
    QUANTUM INDEPENDENT INCREMENT PROCESSES I: FROM CLASSICAL PROBABILITY TO QUANTUM STOCHASTIC CALCULUS, 2005, 1865 : 99 - 180