Self-similar cnoidal and solitary wave solutions of the (1+1)-dimensional generalized nonlinear Schrödinger equation

被引:0
作者
L. H. Zhao
C. Q. Dai
机构
[1] School of Sciences,
[2] Zhejiang Forestry University,undefined
[3] School of Physical Science and Technology,undefined
[4] Suzhou University,undefined
来源
The European Physical Journal D | 2010年 / 58卷
关键词
Solitary Wave; Solitary Wave Solution; Jacobian Elliptic Function; Bright Soliton; Cnoidal Wave;
D O I
暂无
中图分类号
学科分类号
摘要
With the help of the similarity transformation and the solvable stationary nonlinear Schrödinger equation (NLSE), we obtain exact chirped and chirp-free self-similar cnoidal wave and solitary wave solutions of the generalized NLSE exhibiting spatial inhomogeneity, inhomogeneous nonlinearity and gain or loss at the same time. As an example, we investigate their propagation dynamics in a nonlinear optical system, and present a series of interesting properties of optical waves.
引用
收藏
页码:327 / 332
页数:5
相关论文
共 69 条
[1]  
Monro T.M.(1998)undefined Phys. Rev. Lett. 80 4072-undefined
[2]  
Moss D.(2000)undefined Phys. Rev. Lett. 84 6010-undefined
[3]  
Bazylenko M.(2004)undefined Phys. Rev. Lett. 92 213902-undefined
[4]  
Martijn de Sterke C.(2006)undefined Phys. Rev. Lett. 97 013901-undefined
[5]  
Poladian L.(2005)undefined Phys. Rev. E 71 056619-undefined
[6]  
Fermann M.E.(2005)undefined Phys. Rev. E 71 016606-undefined
[7]  
Kruglov V.I.(2008)undefined Phys. Rev. A 78 033835-undefined
[8]  
Thomsen B.C.(2002)undefined Opt. Lett. 27 1729-undefined
[9]  
Dudley J.M.(1984)undefined Opt. Lett. 9 288-undefined
[10]  
Harvey J.D.(1986)undefined Appl. Phys. Lett. 49 236-undefined