Kernel of Vector-Valued Toeplitz Operators

被引:0
作者
Nicolas Chevrot
机构
[1] Université Laval,Département de mathématiques et de statistique
来源
Integral Equations and Operator Theory | 2010年 / 67卷
关键词
Primary 47B32; 30D55; Secondary 46C07; 46E40; 47B35; Toeplitz operators; de Branges Rovnyak spaces; vector-valued functions;
D O I
暂无
中图分类号
学科分类号
摘要
Let S be the shift operator on the Hardy space H2 and let S* be its adjoint. A closed subspace \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal F}$$\end{document} of H2 is said to be nearly S*-invariant if every element \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f\in\mathcal F}$$\end{document} with f(0) = 0 satisfies \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S^*f\in\mathcal F}$$\end{document}. In particular, the kernels of Toeplitz operators are nearly S*-invariant subspaces. Hitt gave the description of these subspaces. They are of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal F=g (H^2\ominus u H^2)}$$\end{document} with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${g\in H^2}$$\end{document} and u inner, u(0) = 0. A very particular fact is that the operator of multiplication by g acts as an isometry on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H^2\ominus uH^2}$$\end{document}. Sarason obtained a characterization of the functions g which act isometrically on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H^2\ominus uH^2}$$\end{document}. Hayashi obtained the link between the symbol \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varphi}$$\end{document} of a Toeplitz operator and the functions g and u to ensure that a given subspace \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal F=gK_u}$$\end{document} is the kernel of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T_\varphi}$$\end{document}. Chalendar, Chevrot and Partington studied the nearly S*-invariant subspaces for vector-valued functions. In this paper, we investigate the generalization of Sarason’s and Hayashi’s results in the vector-valued context.
引用
收藏
页码:57 / 78
页数:21
相关论文
共 50 条
[41]   Limits of sequences of operators on spaces of vector valued functions [J].
Sagher, Y ;
Xiang, ND .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 1997, 3 (Suppl 1) :959-970
[42]   Limits of sequences of operators on spaces of vector valued functions [J].
Yoram Sagher ;
Niandi Xiang .
Journal of Fourier Analysis and Applications, 1997, 3 :959-970
[43]   ON TOEPLITZ OPERATORS AND LOCALIZATION OPERATORS [J].
Abreu, Luis Daniel ;
Faustino, Nelson .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (10) :4317-4323
[44]   On certain Riesz families in vector-valued de Branges-Rovnyak spaces [J].
Chevrot, Nicolas ;
Fricain, Emmanuel ;
Timotin, Dan .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 355 (01) :110-125
[45]   Commuting Toeplitz operators and H-Toeplitz operators on Bergman space [J].
Ding, Qian .
AIMS MATHEMATICS, 2024, 9 (01) :2530-2548
[46]   Dynamic programming and optimal control for vector-valued functions: A state-of-the-art review [J].
Ben Abdelaziz, Fouad ;
La Torre, Davide ;
Alaya, Houda .
RAIRO-OPERATIONS RESEARCH, 2021, 55 :S351-S364
[47]   GENERALIZED QUASICONVEXITIES, CONE SADDLE-POINTS, AND MINIMAX THEOREM FOR VECTOR-VALUED FUNCTIONS [J].
TANAKA, T .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1994, 81 (02) :355-377
[48]   An Integration by Parts Theorem for Kurzweil Integrable Vector-Valued Functions via Bochner Integration [J].
Perez-Becerra, Tomas ;
Alberto Escamilla-Reyna, Juan .
SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2018, 42 (05) :683-690
[49]   Maximal functions and Calderon-Zygmund theory for vector-valued functions with operator weights [J].
Lauzon, Michael .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2007, 56 (04) :1723-1748
[50]   Operators Induced by Toeplitz and Hankel Operators [J].
Datt, Gopal ;
Mittal, Anshika .
SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2019, 43 (02) :183-192