Kernel of Vector-Valued Toeplitz Operators

被引:0
作者
Nicolas Chevrot
机构
[1] Université Laval,Département de mathématiques et de statistique
来源
Integral Equations and Operator Theory | 2010年 / 67卷
关键词
Primary 47B32; 30D55; Secondary 46C07; 46E40; 47B35; Toeplitz operators; de Branges Rovnyak spaces; vector-valued functions;
D O I
暂无
中图分类号
学科分类号
摘要
Let S be the shift operator on the Hardy space H2 and let S* be its adjoint. A closed subspace \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal F}$$\end{document} of H2 is said to be nearly S*-invariant if every element \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f\in\mathcal F}$$\end{document} with f(0) = 0 satisfies \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S^*f\in\mathcal F}$$\end{document}. In particular, the kernels of Toeplitz operators are nearly S*-invariant subspaces. Hitt gave the description of these subspaces. They are of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal F=g (H^2\ominus u H^2)}$$\end{document} with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${g\in H^2}$$\end{document} and u inner, u(0) = 0. A very particular fact is that the operator of multiplication by g acts as an isometry on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H^2\ominus uH^2}$$\end{document}. Sarason obtained a characterization of the functions g which act isometrically on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H^2\ominus uH^2}$$\end{document}. Hayashi obtained the link between the symbol \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varphi}$$\end{document} of a Toeplitz operator and the functions g and u to ensure that a given subspace \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal F=gK_u}$$\end{document} is the kernel of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T_\varphi}$$\end{document}. Chalendar, Chevrot and Partington studied the nearly S*-invariant subspaces for vector-valued functions. In this paper, we investigate the generalization of Sarason’s and Hayashi’s results in the vector-valued context.
引用
收藏
页码:57 / 78
页数:21
相关论文
共 50 条
[31]   Existence theorems for saddle points of vector-valued maps [J].
Tan, KK ;
Yu, J ;
Yuan, XZ .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1996, 89 (03) :731-747
[32]   Refined limiting imbeddings for Sobolev spaces of vector-valued [J].
Krbec, M ;
Schmeisser, HJ .
JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 227 (02) :372-388
[33]   Unitary parts of Toeplitz operators with operator-valued symbols [J].
Narayanan, E. K. ;
Sarkar, Srijan .
STUDIA MATHEMATICA, 2025, 282 (03) :199-224
[34]   Bounded symbols and Reproducing Kernel Thesis for truncated Toeplitz operators [J].
Baranov, Anton ;
Chalendar, Isabelle ;
Fricain, Emmanuel ;
Mashreghi, Javad ;
Timotin, Dan .
JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 259 (10) :2673-2701
[35]   Vector-valued Sobolev spaces based on Banach function spaces [J].
Evseev, Nikita .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 211
[36]   Choquet Theory for Vector-Valued Functions on a Locally Compact Space [J].
Roth, Walter .
JOURNAL OF CONVEX ANALYSIS, 2014, 21 (04) :1141-1164
[37]   Korovkin theory for vector-valued functions on a locally compact space [J].
Roth, Walter .
JOURNAL OF APPROXIMATION THEORY, 2013, 176 :23-41
[38]   Subnormal and quasinormal Toeplitz operators with matrix-valued rational symbols [J].
Curto, Raul E. ;
Hwang, In Sung ;
Kang, Dong-O ;
Lee, Woo Young .
ADVANCES IN MATHEMATICS, 2014, 255 :562-585
[39]   On kernels of Toeplitz operators [J].
Nowak, M. T. ;
Sobolewski, P. ;
Soltysiak, A. ;
Woloszkiewicz-Cyll, M. .
ANALYSIS AND MATHEMATICAL PHYSICS, 2020, 10 (04)
[40]   Berge's maximum theorem to vector-valued functions with some applications [J].
Qiu Xiaoling ;
Peng Dingtao ;
Yu Jian .
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (04) :1861-1872