Kernel of Vector-Valued Toeplitz Operators

被引:0
作者
Nicolas Chevrot
机构
[1] Université Laval,Département de mathématiques et de statistique
来源
Integral Equations and Operator Theory | 2010年 / 67卷
关键词
Primary 47B32; 30D55; Secondary 46C07; 46E40; 47B35; Toeplitz operators; de Branges Rovnyak spaces; vector-valued functions;
D O I
暂无
中图分类号
学科分类号
摘要
Let S be the shift operator on the Hardy space H2 and let S* be its adjoint. A closed subspace \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal F}$$\end{document} of H2 is said to be nearly S*-invariant if every element \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f\in\mathcal F}$$\end{document} with f(0) = 0 satisfies \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S^*f\in\mathcal F}$$\end{document}. In particular, the kernels of Toeplitz operators are nearly S*-invariant subspaces. Hitt gave the description of these subspaces. They are of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal F=g (H^2\ominus u H^2)}$$\end{document} with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${g\in H^2}$$\end{document} and u inner, u(0) = 0. A very particular fact is that the operator of multiplication by g acts as an isometry on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H^2\ominus uH^2}$$\end{document}. Sarason obtained a characterization of the functions g which act isometrically on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H^2\ominus uH^2}$$\end{document}. Hayashi obtained the link between the symbol \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varphi}$$\end{document} of a Toeplitz operator and the functions g and u to ensure that a given subspace \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal F=gK_u}$$\end{document} is the kernel of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${T_\varphi}$$\end{document}. Chalendar, Chevrot and Partington studied the nearly S*-invariant subspaces for vector-valued functions. In this paper, we investigate the generalization of Sarason’s and Hayashi’s results in the vector-valued context.
引用
收藏
页码:57 / 78
页数:21
相关论文
共 50 条
[21]   Spaces of vector-valued functions and their duals [J].
Roth, Walter .
MATHEMATISCHE NACHRICHTEN, 2012, 285 (8-9) :1063-1081
[22]   ON THE RANGE AND KERNEL OF TOEPLITZ AND LITTLE HANKEL OPERATORS [J].
Das, Namita ;
Jena, Pabitra Kumar .
METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2013, 19 (01) :55-67
[23]   Characterizing Sobolev spaces of vector-valued functions [J].
Caamano, Ivan ;
Jaramillo, Jesus A. ;
Prieto, Angeles .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 514 (01)
[24]   Weighted spaces of vector-valued functions and the ε-product [J].
Kruse, Karsten .
BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2020, 14 (04) :1509-1531
[25]   On Vector-Valued Characters for Noncommutative Function Algebras [J].
Blecher, David P. ;
Labuschagne, Louis E. .
COMPLEX ANALYSIS AND OPERATOR THEORY, 2020, 14 (02)
[26]   Some Properties of Vector-valued Lipschitz Algebras [J].
Azizi, Mohsen ;
Biyabani, Emamgholi ;
Rejali, Ali .
IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2020, 15 (02) :191-205
[27]   VECTOR-VALUED FUNCTIONS INTEGRABLE WITH RESPECT TO BILINEAR MAPS [J].
Blasco, O. ;
Calabuig, J. M. .
TAIWANESE JOURNAL OF MATHEMATICS, 2008, 12 (09) :2387-2403
[28]   APPROXIMATE AND CHARACTER AMENABILITY OF VECTOR-VALUED LIPSCHITZ ALGEBRAS [J].
Biyabani, Emamgholi ;
Rejali, Ali .
BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 55 (04) :1109-1124
[29]   EMD of vector-valued functions on surfaces and its applications [J].
Hu, Jianping ;
Liu, Xiuping ;
Wang, Hui ;
Li, Bo ;
Xie, Qi ;
Su, Xin .
Journal of Information and Computational Science, 2015, 12 (11) :4425-4434
[30]   A MINIMAX THEOREM FOR VECTOR-VALUED FUNCTIONS .2. [J].
FERRO, F .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1991, 68 (01) :35-48