Superconvergence of the Local Discontinuous Galerkin Method for One Dimensional Nonlinear Convection-Diffusion Equations

被引:0
作者
Xiaobin Liu
Dazhi Zhang
Xiong Meng
Boying Wu
机构
[1] Harbin Institute of Technology,School of Mathematics
[2] Harbin Institute of Technology,School of Mathematics and Institute for Advanced Study in Mathematics
来源
Journal of Scientific Computing | 2021年 / 87卷
关键词
Local discontinuous Galerkin method; Nonlinear convection-diffusion equation; Superconvergence; Correction function; Projection; 65M12; 65M60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study superconvergence properties of the local discontinuous Galerkin (LDG) methods for solving nonlinear convection-diffusion equations in one space dimension. The main technicality is an elaborate estimate to terms involving projection errors. By introducing a new projection and constructing some correction functions, we prove the (2k+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(2k+1)$$\end{document}th order superconvergence for the cell averages and the numerical flux in the discrete L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} norm with polynomials of degree k≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 1$$\end{document}, no matter whether the flow direction f′(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f'(u)$$\end{document} changes or not. Superconvergence of order k+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k +2$$\end{document} (k+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k +1$$\end{document}) is obtained for the LDG error (its derivative) at interior right (left) Radau points, and the convergence order for the error derivative at Radau points can be improved to k+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k+2$$\end{document} when the direction of the flow doesn’t change. Finally, a supercloseness result of order k+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k+2$$\end{document} towards a special Gauss–Radau projection of the exact solution is shown. The superconvergence analysis can be extended to the generalized numerical fluxes and the mixed boundary conditions. All theoretical findings are confirmed by numerical experiments.
引用
收藏
相关论文
共 62 条
[1]  
Cao W(2017)Superconvergence of local discontinuous Galerkin methods for partial differential equations with higher order derivatives J. Sci. Comput. 72 761-791
[2]  
Huang Q(2017)Superconvergence of discontinuous Galerkin methods based on upwind-biased fluxes for 1D linear hyperbolic equations ESAIM Math. Model. Numer. Anal. 51 467-486
[3]  
Cao W(2018)Superconvergence of discontinuous Galerkin method for scalar nonlinear hyperbolic equations SIAM J. Numer. Anal. 56 732-765
[4]  
Li D(2017)Superconvergence of discontinuous Galerkin methods for 1-D linear hyperbolic equations with degenerate variable coefficients ESAIM Math. Model. Numer. Anal. 51 2213-2235
[5]  
Yang Y(2016)Superconvergence of local discontinuous Galerkin methods for one-dimensional linear parabolic equations Math. Comp. 85 63-84
[6]  
Zhang Z(2014)Superconvergence of discontinuous Galerkin methods for linear hyperbolic equations SIAM J. Numer. Anal. 52 2555-2573
[7]  
Cao W(2003)A superconvergence result for discontinuous Galerkin methods applied to elliptic problems Comput. Methods Appl. Mech. Eng. 192 4675-4685
[8]  
Shu CW(2018)On the conservation of fractional nonlinear Schrödinger equation’s invariants by the local discontinuous Galerkin method J. Sci. Comput. 77 1444-1467
[9]  
Yang Y(2007)Superconvergence of the numerical traces of discontinuous Galerkin and hybridized methods for convection-diffusion problems in one space dimension Math. Comp. 76 67-96
[10]  
Zhang Z(2017)Application of generalized Gauss-Radau projections for the local discontinuous Galerkin method for linear convection-diffusion equations Math. Comp. 86 1233-1267