Generalized Quasilinear Elliptic Equations in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^N$$\end{document}

被引:0
作者
Federica Mennuni
Addolorata Salvatore
机构
[1] Università degli Studi di Bari Aldo Moro,Dipartimento di Matematica
关键词
Quasilinear elliptic equation; modified Schrödinger equation; weak bounded nontrivial solution; positive solution; weak Cerami–Palais–Smale condition; approximating problems; Minimum Principle; “sub-p-linear” growth; 35J20; 35J92; 35Q55; 58E30;
D O I
10.1007/s00009-023-02393-3
中图分类号
学科分类号
摘要
In this paper, we aim at establishing a new existence result for the quasilinear elliptic equation -div(a(x,u,∇u))+At(x,u,∇u)+V(x)|u|p-2u=g(x,u)inRN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} - \textrm{div} (a(x,u,\nabla u)) + A_t(x,u,\nabla u) + V(x) {\vert u \vert }^{p-2} u= g(x,u) \quad \quad \hbox { in }{{\mathbb {R}}}^{N} \end{aligned}$$\end{document}with p>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p>1$$\end{document}, N≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 2\ $$\end{document} and V:RN→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V:{\mathbb {R}}^N\rightarrow {\mathbb {R}}$$\end{document} suitable measurable positive function. Here, we suppose A:RN×R×RN→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A: {\mathbb {R}}^N \times {\mathbb {R}}\times {\mathbb {R}}^N \rightarrow {\mathbb {R}}$$\end{document} is a given C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${C}^{1}$$\end{document}-Carathéodory function which grows as |ξ|p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\xi |^p$$\end{document}, with At(x,t,ξ)=∂A∂t(x,t,ξ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_t(x,t,\xi ) = \frac{\partial A}{\partial t}(x,t,\xi )$$\end{document}, a(x,t,ξ)=∇ξA(x,t,ξ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a(x,t,\xi ) = \nabla _\xi A(x,t,\xi )$$\end{document}, V:RN→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V:{\mathbb {R}}^N\rightarrow {\mathbb {R}}$$\end{document} is a suitable measurable function and g:RN×R→R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g:{\mathbb {R}}^N \times {\mathbb {R}}\rightarrow {\mathbb {R}}$$\end{document} is a given Carathéodory function which grows as |ξ|q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\xi |^q$$\end{document} with 1<q<p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1<q<p$$\end{document}. Since the coefficient of the principal part depends on the solution itself, under suitable assumptions on A(x,t,ξ),V(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A(x,t,\xi ), V(x)$$\end{document} and g(x, t), we study the interaction of two different norms in a suitable Banach space with the aim of obtaining a good variational approach. Thus, a minimization argument on bounded sets can be used to state the existence of a nontrivial weak bounded solution on an arbitrary bounded domain. Then, one nontrivial bounded solution of the given equation can be found by passing to the limit on a sequence of solutions on bounded domains. Finally, under slightly stronger hypotheses, we can able to find a positive solution of the problem.
引用
收藏
相关论文
共 52 条
[1]  
Arcoya D(1996)Critical points for multiple integrals of the calculus of variations Arch. Ration. Mech. Anal. 134 249-274
[2]  
Boccardo L(1998)On a quasilinear elliptic differential equation in unbounded domains, Rend Istit. Mat. Univ. Trieste XXX 113-128
[3]  
Arioli G(2017)Compactness and existence results for the J. Math. Anal. Appl. 451 345-370
[4]  
Gazzola F(1995)-Laplace equation Commun. Partial Differ. Equ. 20 1725-1741
[5]  
Badiale M(1978)Existence and multiplicity results for some superlinear elliptic problems on J. Math. Anal. Appl. 64 695-700
[6]  
Guida M(1988)Discreteness conditions of the spectrum of Schrödinger operators Ann. Mat. Pura Appl. IV Ser. 152 183-196
[7]  
Rolando S(2018)Existence of bounded solutions for nonlinear elliptic unilateral problems Rev. Mat. Iberoam. 34 1001-1020
[8]  
Bartsch T(2006)Critical points of non-regular integral functionals Adv. Nonlinear Stud. 6 269-286
[9]  
Wang ZQ(2009)Multiple solutions of some nonlinear variational problems Calc. Var. Partial Differ. Equ. 34 495-530
[10]  
Benci V(2020)Infinitely many solutions of some nonlinear variational equations Discrete Contin. Dyn. Syst. Ser. S 13 1935-1945