Boas and Titchmarsh Type Theorems for Generalized Lipschitz Classes and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q$$\end{document}-Bessel Fourier Transform

被引:0
作者
S. S. Volosivets
Yu. I. Krotova
机构
[1] Saratov State University,
关键词
generalized Lipschitz class; Fourier transform; -Bessel–Fourier transform;
D O I
10.1134/S0001434623070052
中图分类号
学科分类号
摘要
引用
收藏
页码:55 / 65
页数:10
相关论文
共 50 条
[42]   On generalized inequalities for nonuniform wavelet frames in L2(K)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2({\mathbb {K}})$$\end{document} [J].
Owais Ahmad ;
Neyaz A. Sheikh ;
Abid Ayub Hazari .
Afrika Matematika, 2022, 33 (1)
[43]   Some Integral Representations of the pRq(α,β;z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_pR_q(\alpha ,\beta ;z)$$\end{document} Function [J].
Ankit Pal ;
R. K. Jana ;
A. K. Shukla .
International Journal of Applied and Computational Mathematics, 2020, 6 (3)
[44]   DF2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^2$$\end{document}Net: deformable fourier filter network for hyperspectral image classificationDF2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^2$$\end{document}Net: deformable fourier filter network for hyperspectral image classificationC. Zhong et al. [J].
Chengcheng Zhong ;
Kai Zhang ;
Zitong Zhang ;
Yanan Jiang ;
Chunlei Zhang .
Applied Intelligence, 2025, 55 (7)
[45]   The C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{*}$$\end{document}-algebras of connected real two-step nilpotent Lie groups [J].
Janne-Kathrin Günther ;
Jean Ludwig .
Revista Matemática Complutense, 2016, 29 (1) :13-57
[48]   Spectral Property of Self-Affine Measures on Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pmb {\mathbb {R}^n}$$\end{document} [J].
Zhiyong Wang ;
Jingcheng Liu ;
Juan Su .
Journal of Fourier Analysis and Applications, 2021, 27 (5)
[49]   Local Spectral Formula for Integral Operators on Lp(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{p}({\mathbb T})$\end{document} [J].
Ha Huy Bang ;
Vu Nhat Huy .
Vietnam Journal of Mathematics, 2017, 45 (4) :737-746