Coarse median structures and homomorphisms from Kazhdan groups

被引:0
作者
Rudolf Zeidler
机构
[1] Georg-August-Universität Göttingen,Mathematisches Institut
来源
Geometriae Dedicata | 2016年 / 180卷
关键词
Coarse median spaces; Property (T); Outer automorphism group; 20F65;
D O I
暂无
中图分类号
学科分类号
摘要
We study Bowditch’s notion of a coarse median on a metric space and formally introduce the concept of a coarse median structure as an equivalence class of coarse medians up to closeness. We show that a group which possesses a uniformly left-invariant coarse median structure admits only finitely many conjugacy classes of homomorphisms from a given group with Kazhdan’s property (T). This is a common generalization of a theorem due to Paulin about the outer automorphism group of a hyperbolic group with property (T) as well as of a result of Behrstock–Druţu–Sapir on the mapping class groups of orientable surfaces. We discuss a metric approximation property of finite subsets in coarse median spaces extending the classical result on approximation of Gromov hyperbolic spaces by trees.
引用
收藏
页码:49 / 68
页数:19
相关论文
共 18 条
  • [1] Ballmann W(1997)On Geom. Funct. Anal. 4 615-645
  • [2] Świa̧tkowski J(1983)-cohomology and property (T) for automorphism groups of polyhedral cell complexes Discrete Math. 1 1-30
  • [3] Bandelt H-J(2011)Median algebras J. Lond. Math. Soc. 3 765-784
  • [4] Hedlíková J(2011)Centroids and the rapid decay property in mapping class groups Proc. Lond. Math. Soc. 3 503-554
  • [5] Behrstock JA(2013)Median structures on asymptotic cones and homomorphisms into mapping class groups Pac. J. Math. 1 53-93
  • [6] Minsky YN(2013)Coarse median spaces and groups Math. Proc. Camb. Philos. Soc. 1 85-95
  • [7] Behrstock J(2010)Invariance of coarse median spaces under relative hyperbolicity Adv. Math. 2 882-921
  • [8] Druţu C(2005)Kazhdan and Haagerup properties from the median viewpoint Int. J. Algebra Comput. 5–6 875-885
  • [9] Sapir M(2000)From wall spaces to CAT(0) cube complexes Adv. Appl. Math. 2 125-179
  • [10] Bowditch BH(2004)Graphs of some CAT(0) complexes Geom. Funct. Anal. 1 150-214