Cheeger Type Sobolev Spaces for Metric Space Targets

被引:0
作者
Shin-Ichi Ohta
机构
[1] Tohoku University,Mathematical Institute
来源
Potential Analysis | 2004年 / 20卷
关键词
Sobolev space; metric space; Dirichlet problem;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the natural generalization of Cheeger type Sobolev spaces to maps into a metric space. We solve Dirichlet problem for CAT(0)-space targets, and obtain some results about the relation between Cheeger type Sobolev spaces for maps into a Banach space and those for maps into a subset of that Banach space. We also prove the minimality of upper pointwise Lipschitz constant functions for locally Lipschitz maps into an Alexandrov space of curvature bounded above.
引用
收藏
页码:149 / 175
页数:26
相关论文
共 25 条
  • [11] Colding T. H.(1998)Quasiconformal mappings and Sobolev spaces Studia Math. 131 1-17
  • [12] Hajłasz P.(2001)Some function spaces on spaces of homogeneous type Manuscripta Math. 106 219-248
  • [13] Heinonen J.(1994)The Riemannian structure of Alexandrov spaces J. Differential Geom. 39 629-658
  • [14] Koskela P.(2000)Newtonian spaces: An extension of Sobolev spaces to metric measure spaces Rev. Mat. Iberoamericana 16 243-279
  • [15] Shanmugalingam N.(undefined)undefined undefined undefined undefined-undefined
  • [16] Tyson J.T.(undefined)undefined undefined undefined undefined-undefined
  • [17] Jost J.(undefined)undefined undefined undefined undefined-undefined
  • [18] Korevaar N.J.(undefined)undefined undefined undefined undefined-undefined
  • [19] Schoen R.M.(undefined)undefined undefined undefined undefined-undefined
  • [20] Koskela P.(undefined)undefined undefined undefined undefined-undefined