Cheeger Type Sobolev Spaces for Metric Space Targets

被引:0
作者
Shin-Ichi Ohta
机构
[1] Tohoku University,Mathematical Institute
来源
Potential Analysis | 2004年 / 20卷
关键词
Sobolev space; metric space; Dirichlet problem;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider the natural generalization of Cheeger type Sobolev spaces to maps into a metric space. We solve Dirichlet problem for CAT(0)-space targets, and obtain some results about the relation between Cheeger type Sobolev spaces for maps into a Banach space and those for maps into a subset of that Banach space. We also prove the minimality of upper pointwise Lipschitz constant functions for locally Lipschitz maps into an Alexandrov space of curvature bounded above.
引用
收藏
页码:149 / 175
页数:26
相关论文
共 25 条
  • [1] Alexandrov A.D.(1986)Generalized Riemannian spaces Russian Math. Surveys 41 1-54
  • [2] Berestovskii V.N.(1990)Metric space valued functions of bounded variation Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 17 439-478
  • [3] Nikolaev I.G.(1995)Sobolev and isoperimetric inequalities for Dirichlet forms on homogeneous spaces Atti Accad. Naz. Lincei Cl. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 6 37-44
  • [4] Ambrosio L.(1995)Sobolev inequalities on homogeneous spaces Potential Anal. 4 311-324
  • [5] Biroli M.(1999)Differentiability of Lipschitz functions on metric measure spaces Geom. Funct. Anal. 9 428-517
  • [6] Mosco U.(2000)On the structure of spaces with Ricci curvature bounded below. III J. Differential Geom. 54 37-74
  • [7] Biroli M.(1996)Sobolev spaces on an arbitrary metric space Potential Anal. 5 403-415
  • [8] Mosco U.(2001)Sobolev classes of Banach space-valued functions and quasiconformal mappings J. Anal. Math. 85 87-139
  • [9] Cheeger J.(1994)Equilibrium maps between metric spaces Calc. Var. Partial Differential Equations 2 173-204
  • [10] Cheeger J.(1993)Sobolev spaces and harmonic maps for metric space targets Comm. Anal. Geom. 1 561-659