Large Deviations for Backward Stochastic Differential Equations Driven by G-Brownian Motion

被引:0
作者
Ibrahim Dakaou
Abdoulaye Soumana Hima
机构
[1] Université Dan Dicko Dankoulodo de Maradi,Département de Mathématiques
来源
Journal of Theoretical Probability | 2021年 / 34卷
关键词
Large deviations; -stochastic differential equation; Backward SDEs; Contraction principle; 60F10; 60H10; 60H30;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider forward–backward stochastic differential equation driven by G-Brownian motion (G-FBSDEs in short) with small parameter ε>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon > 0$$\end{document}. We study the asymptotic behavior of the solution of the backward equation and establish a large deviation principle for the corresponding process.
引用
收藏
页码:499 / 521
页数:22
相关论文
共 21 条
[1]  
Denis L(2011)Function spaces and capacity related to a sublinear expectation: application to Potential Anal. 34 139-161
[2]  
Hu M(2008)-brownian motion paths Comptes Rendus Math. 346 75-78
[3]  
Peng S(2009)Large deviation principle for a backward stochastic differential equation with subdifferential operator Stoch. Process. Appl. 119 3356-3382
[4]  
Essaky EH(2010)Pathwise properties and homeomorphic flows for stochastic differential equations driven by Stoch. Process. Appl. 120 2212-2240
[5]  
Gao F(2014)-brownian motion Stoch. Process. Appl. 124 759-784
[6]  
Gao F(2014)Large deviations for stochastic differential equations driven by Stoch. Process. Appl. 124 1170-1195
[7]  
Jiang H(2009)-brownian motion Acta Mathe. Appl. Sin. Engl. Ser. 25 539-546
[8]  
Hu M(2014)Backward stochastic differential equations driven by Random Oper. Stoch. Equ. 22 119-127
[9]  
Ji S(2006)-brownian motion C. R. Acad. Sci. Paris 343 141-144
[10]  
Peng S(2011)Comparison theorem, Feynman–Kac formula and Girsanov transformation for BSDEs driven by Sci. China Math. 54 287-300