Mesh domain decomposition in the finite-difference solution of Maxwell's equations

被引:0
|
作者
Golovashkin D.L. [1 ]
Kazanskiy N.L. [1 ]
机构
[1] Image Processing Systems Institute, RAS S.P. Korolyev Samara State Aerospace University
基金
俄罗斯基础研究基金会;
关键词
FDTD method; Mesh domain decomposition; Speedup of algorithm;
D O I
10.3103/S1060992X09030102
中图分类号
学科分类号
摘要
We discuss the mesh domain decomposition when studying optical diffraction from subwavelength structures using the finite-difference solution of Maxwell's equations. Special consideration is given to the case of decomposition into non-overlapping sub-domains. Theoretical estimates of the algorithms' and computational procedures' speedup at various decomposition parameters are compared. © Allerton Press, Inc., 2009.
引用
收藏
页码:203 / 211
页数:8
相关论文
共 50 条
  • [11] Finite-Difference method of solution of the shallow water equations on an unstructured mesh
    Kobelkov, G.M.
    Drutsa, A.V.
    Solid Mechanics and its Applications, 2014, 211 : 97 - 113
  • [12] Finite-difference method of solution of the shallow water equations on an unstructured mesh
    Kobelkov, G.M.
    Drutsa, A.V.
    Solid Mechanics and its Applications, 2014, 211 : 97 - 113
  • [13] Bicompact Finite-Difference Scheme for Maxwell's Equations in Layered Media
    Belov, A. A.
    Dombrovskaya, Zh. O.
    DOKLADY MATHEMATICS, 2020, 101 (03) : 185 - 188
  • [14] Bicompact Finite-Difference Scheme for Maxwell’s Equations in Layered Media
    A. A. Belov
    Zh. O. Dombrovskaya
    Doklady Mathematics, 2020, 101 : 185 - 188
  • [15] A method for complex geometries in finite-difference solutions of Maxwell's equations
    Nicolaides, R
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2004, 48 (7-8) : 1111 - 1119
  • [16] Numerical solution of Maxwell equations by a finite-difference time-domain method in a medium with frequency and spatial dispersion
    Potravkin, N. N.
    Perezhogin, I. A.
    Makarov, V. A.
    PHYSICAL REVIEW E, 2012, 86 (05):
  • [17] Numerical solution of the time-domain Maxwell equations using high-accuracy finite-difference methods
    Jurgens, H.M.
    Zingg, D.W.
    SIAM Journal on Scientific Computing, 2001, 22 (05): : 1675 - 1696
  • [18] Numerical solution of the time-domain Maxwell equations using high-accuracy finite-difference methods
    Jurgens, HM
    Zingg, DW
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 22 (05): : 1675 - 1696
  • [19] A robust and efficient subgridding algorithm for finite-difference time-domain simulations of Maxwell's equations
    Vaccari, A
    Pontalti, R
    Malacarne, C
    Cristoforetti, L
    JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 194 (01) : 117 - 139
  • [20] Finite-difference time-domain algorithm for solving Maxwell's equations in rotationally symmetric geometries
    Chen, YC
    Mittra, R
    Harms, P
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1996, 44 (06) : 832 - 839