Amenability of semigroups and their algebras modulo a group congruence
被引:0
作者:
论文数: 引用数:
h-index:
机构:
M. Amini
H. Rahimi
论文数: 0引用数: 0
h-index: 0
机构:Tarbiat Modares University,Department of Mathematics, Faculty of Mathematical Sciences
H. Rahimi
机构:
[1] Tarbiat Modares University,Department of Mathematics, Faculty of Mathematical Sciences
[2] School of Mathematics,Department of Mathematics, Faculty of Science, Central Tehran Branch
[3] Institute for Research in Fundamental Sciences (IPM),undefined
[4] Islamic Azad University,undefined
来源:
Acta Mathematica Hungarica
|
2014年
/
144卷
关键词:
43A07;
46H25;
semigroup algebra;
inverse semigroup;
-inversive ;
-semigroup;
group congruence;
amenability modulo an ideal;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We investigate the amenability of the semigroup algebras ℓ1(S/ρ)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\ell^1(S/\rho)}$$\end{document} , where ρ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\rho}$$\end{document} is a group congruence (not necessarily minimal) on a semigroup S. We relate this to a new notion of amenability of Banach algebras modulo an ideal, to prove a version of Johnson’s theorem for a large class of semigroups, including inverse semigroups, E-inversive semigroup and E-inversive E-semigroups.
机构:
Univ Fed Santa Maria, Dept Math, BR-97119900 Santa Maria, RS, BrazilUniv Fed Rio Grande do Sul, Inst Math, BR-91509900 Porto Alegre, RS, Brazil
Bagio, Dirceu
Cortes, Wagner
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio Grande do Sul, Inst Math, BR-91509900 Porto Alegre, RS, BrazilUniv Fed Rio Grande do Sul, Inst Math, BR-91509900 Porto Alegre, RS, Brazil
Cortes, Wagner
Ferrero, Miguel
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio Grande do Sul, Inst Math, BR-91509900 Porto Alegre, RS, BrazilUniv Fed Rio Grande do Sul, Inst Math, BR-91509900 Porto Alegre, RS, Brazil
Ferrero, Miguel
Paques, Antonio
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio Grande do Sul, Inst Math, BR-91509900 Porto Alegre, RS, BrazilUniv Fed Rio Grande do Sul, Inst Math, BR-91509900 Porto Alegre, RS, Brazil
机构:
Jiangxi Normal Univ, Coll Sci & Technol, Nanchang 330027, Jiangxi, Peoples R ChinaJiangxi Normal Univ, Coll Sci & Technol, Nanchang 330027, Jiangxi, Peoples R China
Guo, Junying
Guo, Xiaojiang
论文数: 0引用数: 0
h-index: 0
机构:
Jiangxi Normal Univ, Coll Math & Informat Sci, Nanchang 330022, Jiangxi, Peoples R ChinaJiangxi Normal Univ, Coll Sci & Technol, Nanchang 330027, Jiangxi, Peoples R China
机构:
Univ Fed Santa Maria, Dept Math, BR-97119900 Santa Maria, RS, BrazilUniv Fed Rio Grande do Sul, Inst Math, BR-91509900 Porto Alegre, RS, Brazil
Bagio, Dirceu
Cortes, Wagner
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio Grande do Sul, Inst Math, BR-91509900 Porto Alegre, RS, BrazilUniv Fed Rio Grande do Sul, Inst Math, BR-91509900 Porto Alegre, RS, Brazil
Cortes, Wagner
Ferrero, Miguel
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio Grande do Sul, Inst Math, BR-91509900 Porto Alegre, RS, BrazilUniv Fed Rio Grande do Sul, Inst Math, BR-91509900 Porto Alegre, RS, Brazil
Ferrero, Miguel
Paques, Antonio
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio Grande do Sul, Inst Math, BR-91509900 Porto Alegre, RS, BrazilUniv Fed Rio Grande do Sul, Inst Math, BR-91509900 Porto Alegre, RS, Brazil
机构:
Jiangxi Normal Univ, Coll Sci & Technol, Nanchang 330027, Jiangxi, Peoples R ChinaJiangxi Normal Univ, Coll Sci & Technol, Nanchang 330027, Jiangxi, Peoples R China
Guo, Junying
Guo, Xiaojiang
论文数: 0引用数: 0
h-index: 0
机构:
Jiangxi Normal Univ, Coll Math & Informat Sci, Nanchang 330022, Jiangxi, Peoples R ChinaJiangxi Normal Univ, Coll Sci & Technol, Nanchang 330027, Jiangxi, Peoples R China